Applied Physics A

, Volume 121, Issue 3, pp 1045–1051 | Cite as

Smart antennas for space-borne synthetic aperture radars

  • F. Qin
  • S. Gao
  • C. Mao
  • Z. Wang
  • A. Patyuchenko
  • M. Younis
  • G. Krieger
Invited paper
  • 186 Downloads

Abstract

This paper discusses smart antennas for space-borne synthetic aperture radar (SAR). First, some recent development in smart antennas for space-borne SAR is reviewed. Then, the paper presents a low-cost space-borne SAR system using digital beam forming on receive. The smart antenna system is also discussed, and some results are shown. The antenna system, consisting of a parabolic reflector and multi-feed array, is designed and optimized for dual-band dual-polarized digital beam-forming performance. The operating frequencies are at X and Ka bands with the center frequency of 9.6 and 35.75 GHz, respectively. The stacked dipoles and square patches with parasitic elements are employed as the feed elements at X and Ka bands. Dual-band antenna arrays are combined in the same aperture, which not only reduce the aperture of the feed array, but also coincide the center of dual-band feed arrays.

Notes

Acknowledgments

This work is part of the project ‘DIFFERENT’ funded by EC FP7 (Grant Number: 6069923).

References

  1. 1.
    W.A. Imbriale, S. Gao, L. Boccia, Space Antenna Handbook (Wiley Online Library, New York, 2012)CrossRefGoogle Scholar
  2. 2.
    S. Huber, M. Younis, A. Patyuchenko, G. Krieger, Digital beam forming techniques for spaceborne reflector SAR systems, in Synthetic Aperture Radar (EUSAR), 2010 8th European Conference on, 2010, pp. 1–4Google Scholar
  3. 3.
    D. Perkovic-Martin, J.P. Hoffman, L. Veilleux, Instrument concept for the proposed DESDynI SAR instrument, 2012Google Scholar
  4. 4.
    M. Younis, S. Huber, A. Patyuchenko, F. Bordoni, G. Krieger, Digital beam-forming for spaceborne reflector-and planar-antenna SAR—a system performance comparison. in Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009, 2009, pp. III-733–III-736Google Scholar
  5. 5.
    M.Y. Anton Patyuchenko, Z. Wang, S. Gao, F. Qin, S. Glisic, W. Debski, L. Boccia, G. Amendola, E. Arnieri, M. Krstic, E. Celton, P. Penkala, Spaceborne X/Ka-Band Digital Beamforming Synthetic Aperture Radar for Earth Observation, Advanced RF Sensors and Remote Sensing Instuments & Ka-band Earth Observation Rada Missions Workshop, Nov.4, 2014Google Scholar
  6. 6.
    L.L. Shafai, W.A. Chamma, M. Barakat, P.C. Strickland, G. Seguin, Dual-band dual-polarized perforated microstrip antennas for SAR applications. Antennas Propag. IEEE Trans. 48, 58–66 (2000)CrossRefADSGoogle Scholar
  7. 7.
    X. Qu, S. Zhong, Y. Zhang, W. Wang, Design of an S/X dual-band dual-polarised microstrip antenna array for SAR applications. Microw. Antennas Propag. IET 1, 513–517 (2007)CrossRefGoogle Scholar
  8. 8.
    S.-C. Gao, L.-W. Li, M.-S. Leong, T.-S. Yeo, Dual-polarized slot-coupled planar antenna with wide bandwidth. Antennas Propag. IEEE Trans. 51, 441–448 (2003)CrossRefADSGoogle Scholar
  9. 9.
    S. Gao, A. Sambell, Dual-polarized broad-band microstrip antennas fed by proximity coupling. Antennas Propag. IEEE Trans. 53, 526–530 (2005)CrossRefADSGoogle Scholar
  10. 10.
    M. Ludwig, C. Buck, F. Coromina, M. Suess, Status and trends for space-borne phased array radar, in Microwave Symposium Digest, 2005 IEEE MTT-S International, 2005, p. 4 ppGoogle Scholar
  11. 11.
    P. Capece, Active SAR antennas: design, development, and current programs. J. Antennas Propag., 2009, 1–11 (2009)CrossRefGoogle Scholar
  12. 12.
    B. Grafmuller, A. Herschlein, C. Fischer, The TerraSAR-X antenna system, in Radar Conference, 2005 IEEE International, 2005, pp. 222–225Google Scholar
  13. 13.
    S. Buckreuss, R. Werninghaus, W. Pitz, The German satellite mission terraSAR-X. Aerosp. Electron. Syst. Mag IEEE 24, 4–9 (2009)CrossRefGoogle Scholar
  14. 14.
    P. Iervolino, R. Guida, P. Whittaker, NovaSAR-S and Maritime Surveillance, in IGARSS Proceedings, 2013Google Scholar
  15. 15.
    S. Gao, J.T.S. Sumantyo, SAR Antenna Development in the UKGoogle Scholar
  16. 16.
    R. Di Bari, T. Brown, S. Gao, M. Notter, D. Hall, C. Underwood, Dual-polarized printed S-band radar array antenna for spacecraft applications. Antennas Wirel. Propag. Lett. IEEE 10, 987–990 (2011)CrossRefADSGoogle Scholar
  17. 17.
    M. Süß, B. Grafmüller, R. Zahn, A novel high resolution, wide swath SAR system, in Geoscience and Remote Sensing Symposium, 2001. IGARSS’01. IEEE 2001 International, 2001, pp. 1013–1015Google Scholar
  18. 18.
    M. Younis, C. Fischer, W. Wiesbeck, Digital beamforming in SAR systems. Geosci. Remote Sens. IEEE Trans 41, 1735–1739 (2003)CrossRefADSGoogle Scholar
  19. 19.
    G. Krieger, I. Hajnsek, K.P. Papathanassiou, M. Younis, A. Moreira, Interferometric synthetic aperture radar (SAR) missions employing formation flying, in Proceedings of the IEEE, vol. 98, pp. 816–843, 2010Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • F. Qin
    • 1
  • S. Gao
    • 1
  • C. Mao
    • 1
  • Z. Wang
    • 1
  • A. Patyuchenko
    • 2
  • M. Younis
    • 2
  • G. Krieger
    • 2
  1. 1.School of Engineering and Digital ArtsUniversity of KentCanterburyUK
  2. 2.Microwaves and Radar InstituteGerman Aerospace Centre (DLR)WesslingGermany

Personalised recommendations