Applied Physics A

, Volume 119, Issue 3, pp 795–805 | Cite as

Neutron activation autoradiography and scanning macro-XRF of Rembrandt van Rijn’s Susanna and the Elders (Gemäldegalerie Berlin): a comparison of two methods for imaging of historical paintings with elemental contrast

  • Matthias AlfeldEmail author
  • Claudia Laurenze-Landsberg
  • Andrea Denker
  • Koen Janssens
  • Petria Noble
Invited Paper


Imaging methods with elemental contrast are of great value for the investigation of historical paintings, as they allow for study of sub-surface layers that provide insight into a painting’s creation process. Two of the most important methods are neutron activation autoradiography (NAAR) and scanning macro-XRF (MA-XRF). Given the differences between these methods in the fundamental physical phenomena exploited, a theoretical comparison of their capabilities is difficult and until now a critical comparison of their use on the same painting is missing. In this paper, we present a study of Rembrandt van Rijn’s painting Susanna and the Elders from the Gemäldegalerie in Berlin employing both techniques. The painting features a considerable number of overpainted features and a wide range of pigments with different elemental tracers, including earth pigments (Mn/Fe), Azurite (Cu), lead white (Pb), vermilion (Hg) and smalt (Co, As). MA-XRF can detect all elements above Si (Z = 14), suffers from few spectral overlaps and can be performed in a few tens of hours in situ, i.e. in a museum. NAAR requires the stay of the painting at a research facility for several weeks, and inter-element interferences can be difficult to resolve. Also, only a limited number of elements contribute to the acquired autoradiographs, most notably Mn, Cu, As, Co, Hg and P. However, NAAR provides a higher lateral resolution and is less hindered by absorption in covering layers, which makes it the only method capable of visualizing P in lower paint layers.


Lateral Resolution Paint Layer Lead White Distribution Image Orpiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Interuniversity Attraction Poles Programme–Belgian Science Policy (IUAP VI/16). The text also presents the results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) Project Nos. G.0704.08 and G.01769.09. M. Alfeld received from 2009 to 2013 a PhD fellowship of the Research Foundation-Flanders (FWO).


  1. 1.
    A. Denker, K. Kleinert, C. Laurenze-Landsberg, M. Reimelt, B. Schröder-Smeibidl, Nucl. Instrum. Methods Phys. Res. Sect. A 651, 273 (2011)CrossRefADSGoogle Scholar
  2. 2.
    C.-O. Fischer, C. Laurenze-Landsberg, C. Schmidt, K. Slusallek, Restauro 105, 426 (1999)Google Scholar
  3. 3.
    E.V. Sayre, H.N. Lechtman, Stud. Conserv. 13, 161 (1968)CrossRefGoogle Scholar
  4. 4.
    C.-O. Fischer, M. Gallagher, C. Laurenze, C. Schmidt, K. Slusallek, Nucl. Instrum. Methods Phys. Res. Sect. A 424, 258 (1999)CrossRefADSGoogle Scholar
  5. 5.
    M.W. Ainsworth, J. Brealey, M.J. Cotter, K. Groen, E. Haverkamp-Begemann, P. Meyers, E.V. Sayre, L. van Zelst, Art and Autoradiography: Insight Into the Genesis of Paintings by Rembrandt, Van Dyck and Vermeer (Metropolitan Museum of Art, New York, 1982)Google Scholar
  6. 6.
    C.-O. Fischer, J. Kelch, C. Laurenze, W. Leuther, K. Slusallek, Restauro 94, 259 (1988)Google Scholar
  7. 7.
    C.-O. Fischer, J. Kelch, C. Laurenze, W. Leuther, K. Slusallek, Kerntechnik 51, 9 (1987)Google Scholar
  8. 8.
    H. Bronk, S. Röhrs, A. Bjeoumikhov, N. Langhoff, J. Schmalz, R. Wedell, H.-E. Gorny, A. Herold, U. Waldschläger, Fresenius J. Anal. Chem. 371, 307 (2001)CrossRefGoogle Scholar
  9. 9.
    A. Denker, J. Opitz-Coutureau, Nucl. Instrum. Methods Phys. Res. Sect. B 213, 677 (2004)CrossRefADSGoogle Scholar
  10. 10.
    N. Grassi, Nucl. Instrum. Methods Phys. Res. Sect. B 267, 825 (2009)CrossRefADSGoogle Scholar
  11. 11.
    G. Van der Snickt, K. Janssens, O. Schalm, C. Aibeo, H. Kloust, M. Alfeld, X-Ray Spectrom. 39, 103 (2010)CrossRefGoogle Scholar
  12. 12.
    G. Van der Snickt, C. Miliani, K. Janssens, B.G. Brunetti, A. Romani, F. Rosi, P. Walter, J. Castaing, W. De Nolf, L. Klaassen, I. Labarque, R. Wittermann, J. Anal. At. Spectrom. 26, 2216 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Dik, K. Janssens, G. Van der Snickt, L. van der Loeff, K. Rickers, M. Cotte, Anal. Chem. 80, 6436 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Alfeld, J.A.C. Broekaert, Spectrochim. Acta Part B 88, 211 (2013)CrossRefADSGoogle Scholar
  15. 15.
    K. Janssens, M. Alfeld, G. Van der Snickt, W. De Nolf, F. Vanmeert, M. Radepont, L. Monico, J. Dik, M. Cotte, G. Falkenberg, C. Miliani, B.G. Brunetti, Annu. Rev. Anal. Chem. 6, 399 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Alfeld, K. Janssens, K. Appel, B. Thijsse, J. Blaas, J. Dik, Z. Kunsttechnol. Konserv. 25, 157 (2011)Google Scholar
  17. 17.
    D.L. Howard, M.D. de Jonge, D. Lau, D. Hay, M. Varcoe-Cocks, C.G. Ryan, R. Kirkham, G. Moorhead, D. Paterson, D. Thurrowgood, Anal. Chem. 84, 3278 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Alfeld, K. Janssens, J. Dik, W. De Nolf, G. Van der Snickt, J. Anal. At. Spectrom. 26, 899 (2011)CrossRefGoogle Scholar
  19. 19.
    F.P. Hocquet, H.C. del Castillo, A.C. Xicotencatl, C. Bourgeois, C. Oger, A. Marchal, M. Clar, S. Rakkaa, E. Micha, D. Strivay, Anal. Bioanal. Chem. 399, 3109 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Alfeld, J. Vaz Pedroso, M. van Eikema Hommes, G. Van der Snickt, G. Tauber, J. Blaas, M. Haschke, K. Erler, J. Dik, K. Janssens, J. Anal. At. Spectrom. 28, 760 (2013)CrossRefGoogle Scholar
  21. 21.
    C. Seim, C. Laurenze-Landsberg, B. Schröder-Smeibidl, I. Mantouvalou, C. de Boer, B. Kanngießer, J. Anal. At. Spectrom. 29, 1354 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Franken, in Album Discipulorum, ed. by J.R.J. van Asperen de Boer (Waanders, Zwolle, 1997), pp. 66–73Google Scholar
  23. 23.
    M. Franken, in Rembrandt: Quest of a Genius, ed. by E. van de Wetering (Waanders, Zwolle, 2006), pp. 153–177Google Scholar
  24. 24.
    E.J. Sluijter, Rembrandt and the Female Nude (Amsterdam University Press, Amsterdam, 2006)CrossRefGoogle Scholar
  25. 25.
    E. van de Wetering, et al, in A Corpus of Rembrandt Paintings V, ed. by E. van de Wetering (Dordrecht, Springer, 2011), pp. 325–342CrossRefGoogle Scholar
  26. 26.
    M. Alfeld, G. Van der Snickt, F. Vanmeert, K. Janssens, J. Dik, K. Appel, L. van der Loeff, M. Chavannes, T. Meedendorp, E. Hendriks, Appl. Phys. A Mater. Sci. Process. 111, 165 (2013)CrossRefADSGoogle Scholar
  27. 27.
    V.A. Sole, E. Papillon, M. Cotte, P. Walter, J. Susini, Spectrochim. Acta Part B 62, 63 (2007)CrossRefADSGoogle Scholar
  28. 28.
    M. Alfeld, K. Janssens, J. Anal. At. Spectrom. 30, 777 (2015)CrossRefGoogle Scholar
  29. 29.
    D. Bomford, J. Kirby, A. Roy, A. Rüger, R. White, Art in the Making: Rembrandt (National Gallery Company, London, 2006), pp. 35–47Google Scholar
  30. 30.
    P. Noble, A. van Loon, M. Alfeld, K. Janssens, J. Dik, Technè 35, 36 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Matthias Alfeld
    • 1
    • 2
    Email author
  • Claudia Laurenze-Landsberg
    • 3
  • Andrea Denker
    • 4
  • Koen Janssens
    • 2
  • Petria Noble
    • 5
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  2. 2.University of AntwerpAntwerpBelgium
  3. 3.Gemäldegalerie BerlinBerlinGermany
  4. 4.Helmholtz-Zentrum Berlin (formerly Hahn-Meitner-Institute)BerlinGermany
  5. 5.RijksmuseumAmsterdamThe Netherlands

Personalised recommendations