Applied Physics A

, Volume 119, Issue 3, pp 1075–1080 | Cite as

Femtosecond laser additive manufacturing of iron and tungsten parts

  • Bai NieEmail author
  • Lihmei Yang
  • Huan Huang
  • Shuang Bai
  • Peng Wan
  • Jian Liu


For the first time, femtosecond laser additive manufacturing is demonstrated. Pure iron and tungsten powders, having very different melting temperature and mechanical properties, are used for the demonstration. Parts with various shapes, such as ring and cube, are fabricated. Micro-hardness and ultimate tensile strength are investigated for the fabricated samples. The results are also compared to the similar parts made by a continuous-wave laser. It is found that fs laser additive manufacturing can obtain better mechanical properties and fabricate materials that are not possible before.


Ultimate Tensile Strength Fiber Laser Additive Manufacturing Selective Laser Melting Powder Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.P. Kruth, CIRP Ann. Manuf. Technol. 40(2), 603 (1991)CrossRefGoogle Scholar
  2. 2.
    I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies (Springer, New York, 2010)CrossRefGoogle Scholar
  3. 3.
    G.K. Lewis, E. Schlienger, Mater. Des. 21(4), 417 (2000)CrossRefGoogle Scholar
  4. 4.
    J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, J. Mater. Process. Technol. 149(1), 616 (2004)CrossRefGoogle Scholar
  5. 5.
    F. Abe, K. Osakada, M. Shiomi, K. Uematsu, M. Matsumoto, J. Mater. Process. Technol. 111(1), 210 (2001)CrossRefGoogle Scholar
  6. 6.
    W. Yeong, C. Yap, M. Mapar, C. Chua, in High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 1–5 October, 2013 (CRC Press, 2013), p. 65Google Scholar
  7. 7.
    E. Lassner, W.D. Schubert, Tungsten: Properties, Chemistry, Technology of the Elements, Alloys, and Chemical Compounds (Springer, New York, 1999)CrossRefGoogle Scholar
  8. 8.
    J.M. Lonergan, W.G. Fahrenholtz, G.E. Hilmas, J. Am. Ceram. Soc. 97(6), 1689–1691 (2014)CrossRefGoogle Scholar
  9. 9.
    B. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tünnermann, Appl. Phys. A 63(2), 109 (1996)CrossRefADSGoogle Scholar
  10. 10.
    H. Huang, L.M. Yang, J. Liu, SPIE Defense, Security, and Sensing (International Society for Optics and Photonics, San Francisco, 2012)Google Scholar
  11. 11.
    W.R. Zipfel, R.M. Williams, W.W. Webb, Nature Biotechnol. 21(11), 1369 (2003)CrossRefGoogle Scholar
  12. 12.
    S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Opt. Express 13(12), 4708 (2005)CrossRefADSGoogle Scholar
  13. 13.
    R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, A. Feuer, Opt. Express 22(9), 11312 (2014)CrossRefADSGoogle Scholar
  14. 14.
    B. Nie, H. Huang, S. Bai, J. Liu, Appl. Phys. A 118(1), 37–41 (2015)CrossRefADSGoogle Scholar
  15. 15.
    B. Song, S. Dong, S. Deng, H. Liao, C. Coddet, Opt. Laser Technol. 56, 451 (2014)CrossRefADSGoogle Scholar
  16. 16.
    A.C. Reardon, Metallurgy for the Non-metallurgist (ASM International, Geauga, 2011)Google Scholar
  17. 17.
    F.F. Schmidt, H.R. Ogden, The Engineering Properties of Tungsten and Tungsten Alloys (Technical report, DTIC Document, 1963)Google Scholar
  18. 18.
    Q. Wei, T. Jiao, K. Ramesh, E. Ma, L. Kecskes, L. Magness, R. Dowding, V. Kazykhanov, R. Valiev, Acta Mater. 54(1), 77 (2006)Google Scholar
  19. 19.
    Q. Wei, L. Kecskes, Mater. Sci. Eng. A 491(1), 62 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bai Nie
    • 1
    Email author
  • Lihmei Yang
    • 1
  • Huan Huang
    • 1
  • Shuang Bai
    • 1
  • Peng Wan
    • 1
  • Jian Liu
    • 1
  1. 1.PolarOnyx, Inc.San JoseUSA

Personalised recommendations