Applied Physics A

, Volume 119, Issue 1, pp 11–18 | Cite as

Phonon localization in ultrathin layered structures

  • F. Döring
  • C. Eberl
  • S. Schlenkrich
  • F. Schlenkrich
  • S. Hoffmann
  • T. Liese
  • H. U. Krebs
  • S. Pisana
  • T. Santos
  • H. Schuhmann
  • M. Seibt
  • M. Mansurova
  • H. Ulrichs
  • V. Zbarsky
  • M. Münzenberg
Invited paper

Abstract

An efficient way for minimizing phonon thermal conductivity in solids is to nanostructure them by means of reduced phonon mean free path, phonon scattering and phonon reflection at interfaces. A sophisticated approach toward this lies in the fabrication of thin multilayer films of different materials. In this paper, we show by femtosecond-pump-probe reflectivity measurements that in different multilayer systems with varying acoustic mismatch (consisting of metals, semiconductors, oxides and polymers), oscillations due to phonon localization can be observed. For the growth of multilayer films with well-defined layer thicknesses, we used magnetron sputtering, evaporation and pulsed laser deposition. By altering the material combinations and reducing the layer thicknesses down to 3 nm, we observed different mechanisms of phonon blocking, reaching in the frequency regime up to 360 GHz.

References

  1. 1.
    M. Donabedian, D.G. Gilmore, in Satellite Thermal Control Handbook, ed. by D.G. Gilmore (The Aerospace Corporation Press, 1994), Ch. 4, Sec. 3Google Scholar
  2. 2.
    A.M. Limarga, D.R. Clarke, Int. J. Appl. Ceram. Technol. 6, 400 (2009)CrossRefGoogle Scholar
  3. 3.
    D. Josell, A. Cezairliyan, J.E. Bonevich, Int. J. Thermophys. 19, 525 (1998)CrossRefGoogle Scholar
  4. 4.
    K.E. Goodson, Science 315, 343 (2007)CrossRefGoogle Scholar
  5. 5.
    R.M. Costescu, D.G. Cahill, F.H. Fabreguette, Z.A. Sechrist, S.M. George, Science 303, 989 (2004)CrossRefADSGoogle Scholar
  6. 6.
    C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Science 315, 351 (2007)CrossRefADSGoogle Scholar
  7. 7.
    S.M. Lee, D.G. Cahill, T.H. Allen, Phys. Rev. B 52, 1 (1995)CrossRefGoogle Scholar
  8. 8.
    C. Thomsen, J. Strait, Z. Vardeny, H.J. Maris, J. Tauc, J.J. Hauser, Phys. Rev. Lett. 52, 10 (1984)Google Scholar
  9. 9.
    R. Merlin, Solid State Commun. 102, 207 (1997)CrossRefADSGoogle Scholar
  10. 10.
    R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley, Phys. Rev. Lett. 58, 1680 (1987)CrossRefADSGoogle Scholar
  11. 11.
    S.D. Brorson, A. Kazeroonian, J.S. Moodera, D.W. Face, T.K. Cheng, E.P. Ippen, M.S. Dresselhaus, G. Dresselhaus, Phys. Rev. Lett. 64, 2172 (1990)CrossRefADSGoogle Scholar
  12. 12.
    Y. Ezzahri, S. Grauby, J.M. Rampnoux, H. Michel, G. Pernot, W. Claeys, S. Dilhaire, C. Rossignol, G. Zeng, A. Shakouri, Phys. Rev. B 75, 195309 (2007)CrossRefADSGoogle Scholar
  13. 13.
    B. Djafari-Rouhani, L. Dobrzynski, O. Hardouin Duparc, R.E. Camley, A.A. Maradudin, Phys. Rev. B 28, 1711 (1983)CrossRefADSGoogle Scholar
  14. 14.
    H.U. Krebs, O. Bremert, Appl. Phys. Lett. 62, 2341 (1993)CrossRefADSGoogle Scholar
  15. 15.
    D.L. Windt, Comput. Phys. 12, 360 (1998)CrossRefADSGoogle Scholar
  16. 16.
    C. Eberl, T. Liese, F. Schlenkrich, F. Döring, H. Hofsäss, H.U. Krebs, Appl. Phys. A 111, 431 (2013)CrossRefADSGoogle Scholar
  17. 17.
    C. Eberl, F. Döring, T. Liese, F. Schlenkrich, B. Roos, M. Hahn, T. Hoinkes, A. Rauschenbeutel, M. Osterhoff, T. Salditt, H.U. Krebs, Appl. Surf. Sci. 307, 638 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Fähler, H.U. Krebs, Appl. Surf. Sci. 96–98, 61–65 (1996)CrossRefGoogle Scholar
  19. 19.
    J. Röder, T. Liese, H.U. Krebs, J. Appl. Phys. 107, 103515 (2010)CrossRefADSGoogle Scholar
  20. 20.
    F. Döring, A.L. Robisch, C. Eberl, M. Osterhoff, A. Ruhlandt, T. Liese, F. Schlenkrich, S. Hoffmann, M. Bartels, T. Salditt, H.U. Krebs, Opt. Express 21, 19311 (2013)CrossRefADSGoogle Scholar
  21. 21.
    H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou, Phys. Rev. Lett. 58, 1212 (1987)CrossRefADSGoogle Scholar
  22. 22.
    A. Taflove, Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, 1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • F. Döring
    • 1
  • C. Eberl
    • 1
  • S. Schlenkrich
    • 1
  • F. Schlenkrich
    • 1
  • S. Hoffmann
    • 1
  • T. Liese
    • 1
  • H. U. Krebs
    • 1
  • S. Pisana
    • 2
    • 6
  • T. Santos
    • 2
  • H. Schuhmann
    • 3
  • M. Seibt
    • 3
  • M. Mansurova
    • 4
  • H. Ulrichs
    • 4
  • V. Zbarsky
    • 4
  • M. Münzenberg
    • 4
    • 5
  1. 1.Institut für MaterialphysikGeorg-August-University GöttingenGöttingenGermany
  2. 2.San Jose Research CenterHGST a Western Digital CompanySan JoseUSA
  3. 3.IV. Physikalisches InstitutGeorg-August-University GöttingenGöttingenGermany
  4. 4.I. Physikalisches InstitutGeorg-August-University GöttingenGöttingenGermany
  5. 5.Institute of PhysicsErnst-Moritz-Arndt University GreifswaldGreifswaldGermany
  6. 6.Department of Electrical Engineering and Computer ScienceYork UniversityTorontoCanada

Personalised recommendations