Advertisement

Applied Physics A

, Volume 119, Issue 1, pp 343–349 | Cite as

Fabrication and micro-photoluminescence property of CdSe/CdS core/shell nanowires

  • Guozhang DaiEmail author
  • Guangyang Gou
  • Zeming Wu
  • Yu Chen
  • Hongjian Li
  • Qiang WanEmail author
  • Bingsuo Zou
Article

Abstract

Hetero-epitaxial CdSe/CdS core/shell nanowires (NWs) were prepared by a source-controllable chemical vapor deposition method. A two-stage growth mechanism was proposed to the growth process of the core/shell NWs. Micro-photoluminescence (μ-PL) property of individual NW was studied by a confocal microscopy system. The pure CdSe NW emits a red light with peak at 712.3 nm, which is inconsistent with the CdSe band-edge emission. The CdSe/CdS core/shell NW emits two apparent peaks, one is an intensive red emission peak centered at 715.2 nm and the other is a weak green emission peak located at 516.2 nm. The room temperature μ-PL spectrum shows that the PL intensity of CdSe NW was evidently promoted by coating the CdS shell, and this is because CdS improves the surface state optimizing the energy band structure of CdSe NW. The as-synthesized CdSe/CdS core/shell NW has more efficient PL quantum yields than pure CdSe NW and may find potential applications in nanoscale photonic devices.

Keywords

Energy Band Structure CdSe Core Pure CdSe Treat Silicon Wafer Unsaturated Dangling Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the NSF of China (Nos. 51002009, 51302078 and 61275174), Hunan provincial Natural Science Foundation of China (No. 13jj3005) and Fundamental Research Funds for the Central South Universities (No. 2012QNZT055).

References

  1. 1.
    L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Nature 420, 57 (2002)CrossRefADSGoogle Scholar
  2. 2.
    R. Agarwal, Small 41, 872 (2008)Google Scholar
  3. 3.
    G.Z. Shen, D. Chen, Nanoscale Res. Lett. 4, 779 (2009)CrossRefADSGoogle Scholar
  4. 4.
    C. Li, Y.F. Yu, M.F. Chi, L.Y. Cao, Nano Lett. 13, 948 (2013)CrossRefADSGoogle Scholar
  5. 5.
    Y. Li, F. Qian, C.M. Lieber, Mater. Today 9, 18 (2006)CrossRefGoogle Scholar
  6. 6.
    F. Qian, Y. Li, S. Gradečak, D. Wang, C.J. Barrelet, C.M. Lieber, Nano Lett. 4, 1975 (2004)CrossRefADSGoogle Scholar
  7. 7.
    H.X. Li, C. Cheng, X. Li, J. Liu, C. Guan, Y.Y. Tay, H.J. Fan, J. Phys. Chem. C 116, 3802 (2012)CrossRefGoogle Scholar
  8. 8.
    T.J. Kempaa, J.F. Cahoona, S.K. Kima, R.W. Daya, D.C. Bellc, H.G. Parkb, C.M. Lieber, PNAS 109, 407 (2012)CrossRefGoogle Scholar
  9. 9.
    P.F. Guo, W. Hu, Q.L. Zhang, X.J. Zhuang, X.L. Zhu, H. Zhou, Z.P. Shan, J.Y. Xu, A.L. Pan, Adv. Mater. 26, 2844 (2014)CrossRefGoogle Scholar
  10. 10.
    D.V. Talapin, R. Koeppe, S. Gotzinger, A. Komowski, J.M. Lupton, A.L. Rogach, O. Benson, J. Feldmann, H. Weller, Nano Lett. 3, 1677 (2003)CrossRefADSGoogle Scholar
  11. 11.
    L. Carbone, C. Nobile, M.D. Giorgi, F.D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I.R. Franchini, Nano Lett. 7, 2942 (2007)CrossRefADSGoogle Scholar
  12. 12.
    A. Fiore, R. Mastria, M. Grazia-Lupo, G. Lanzani, C. Giannini, E. Carlino, G. Morello, M.D. Giorgi, Y. Li, R. Cingolani, J. Am. Chem. Soc. 131, 2274 (2009)CrossRefGoogle Scholar
  13. 13.
    J.A. Goeb, R.W. Black, J. Puthussery, J. Giblin, T.H. Kose, M. Kuno, J. Am. Chem. Soc. 130, 14822 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Jung, D.K. Ko, R. Agarwal, Nano Lett. 7, 264 (2007)CrossRefADSGoogle Scholar
  15. 15.
    G.Z. Dai, Z.W. Peng, Q.L. Zhang, W.C. Zhou, M.X. Xia, H.X. Li, A.L. Pan, Q. Wan, B.S. Zou, Nanotechnology 20, 125601 (2009)CrossRefADSGoogle Scholar
  16. 16.
    X. Huang, M. Wang, M.G. Willinger, L.D. Shao, D.S. Su, X.M. Meng, ACS Nano 6, 7333 (2012)CrossRefGoogle Scholar
  17. 17.
    P.F. Guo, X.J. Zhuang, J.Y. Xu, Q.L. Zhang, W. Hu, X.L. Zhu, X.X. Wang, Q. Wan, P.B. He, H. Zhou, A.L. Pan, Nano Lett. 13, 1251 (2013)CrossRefADSGoogle Scholar
  18. 18.
    Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)CrossRefGoogle Scholar
  19. 19.
    G.Z. Dai, Q.L. Zhang, Z.W. Peng, W.C. Zhou, M.X. Xia, Q. Wan, A.L. Pan, B.S. Zou, J. Phys. D Appl. Phys. 41, 135301 (2008)CrossRefADSGoogle Scholar
  20. 20.
    P.V. Radovanovic, K.G. Stamplecoskie, B.G. Pautler, J. Am. Chem. Soc. 129, 10980 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Yan, G.Z. Dai, S. Hu, Q.L. Zhang, B.S. Zou, Mater. Lett. 65, 2522 (2011)CrossRefGoogle Scholar
  22. 22.
    A.L. Pan, D. Liu, R.B. Liu, F.F. Wang, X. Zhu, B.S. Zou, Small 1, 980 (2005)CrossRefGoogle Scholar
  23. 23.
    L. Dloczik, R. Könenkamp, Nano Lett. 3, 651 (2003)CrossRefADSGoogle Scholar
  24. 24.
    J.Y. Xu, L. Ma, P.F. Guo, X.J. Zhuang, X.L. Zhu, W. Hu, X.F. Duan, A.L. Pan, J. Am. Chem. Soc. 134, 12394 (2012)CrossRefGoogle Scholar
  25. 25.
    T.Y. Zhai, Z.J. Gu, Y. Dong, H.Z. Zhong, Y. Ma, H.B. Fu, Y.F. Li, J.N. Yao, J. Chem. Phys. 111, 11604 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Kuno, J.K. Lee, B.O. Dabbousi, F.V. Mikulec, M.G. Bawendi, J. Chem. Phys. 106, 9869 (1997)CrossRefADSGoogle Scholar
  27. 27.
    G.Z. Dai, Y. Chen, Q. Wan, Q.L. Zhang, A.L. Pan, B.S. Zou, Solid State Commun. 167, 31 (2013)CrossRefADSGoogle Scholar
  28. 28.
    X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and ElectronicsCentral South UniversityChangsha, HunanPeople’s Republic of China
  2. 2.School of Physics and ElectronicsHunan UniversityChangshaPeople’s Republic of China
  3. 3.Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of PhysicsBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations