Applied Physics A

, Volume 119, Issue 1, pp 85–95 | Cite as

Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity

  • Ngo Xuan Dinh
  • Do Thi Chi
  • Nguyen Thi Lan
  • Hoang Lan
  • Hoang Van Tuan
  • Nguyen Van Quy
  • Vu Ngoc Phan
  • Tran Quang Huy
  • Anh-Tuan Le
Article

Abstract

In recent years, a growing number of outbreak of infectious diseases have emerged all over the world. The outbreak of re-emerging and emerging infectious diseases is a considerable burden on global economies and public health. Nano-antimicrobials have been studied as an effective solution for the prevention of infectious diseases. In this work, we demonstrated a modified photochemical approach for the preparation of carbon nanotubes–silver nanoparticles (CNTs–Ag) and graphene oxide–silver nanoparticles (GO–Ag) nanocomposites, which can be stably dispersible in aqueous solution. The formation of silver nanoparticles (Ag-NPs) on the functionalized CNTs and GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and UV–Vis measurements. These analyses indicated that the average particle sizes of Ag-NPs deposited on GO/CNTs nanostructures were ~6–7 nm with nearly uniform size distribution. Moreover, these nanocomposites were found to exhibit enhanced antibacterial activity against two strains of infectious bacteria including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria as compared to bare Ag-NPs. Our obtained studies showed a high potential of GO–Ag and CNTs–Ag nanocomposites as effective and long-term disinfection solution to eliminate infectious bacterial pathogens.

References

  1. 1.
    World Health Organization, Global report for research on infectious diseases of poverty (2012)Google Scholar
  2. 2.
    F. Marinelli, O. Genilloud (eds.), Antimicrobial: new and old molecules in the fight against multi-resistant bacteria (Springer, Berlin, Heidelberg, 2014)Google Scholar
  3. 3.
    Mahendra Rai (ed.), Nano-antimicrobials: progress and prospects (Springer, Berlin, Heidelberg, 2012)Google Scholar
  4. 4.
    S. Chernousova, M. Epple, Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 52, 1636 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83 (2009)CrossRefGoogle Scholar
  6. 6.
    D. Pathak, T. Wagner, J. Šubrt, J. Kupcik, Characterization of mechanically synthesized AgInSe2 nanostructures. Can. J. Phys. 92, 789 (2014)CrossRefADSGoogle Scholar
  7. 7.
    D. Pathak, R.K. Bedi, D. Kaur, Characterization of Ag-films deposited by hot wall vacuum evaporation method. Mater. Manuf. Process. 25, 1012 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Yu, Y. Yin, J. Liu, Silver nanoparticles in the environment. Environ. Sci. Process. Impacts 15, 78 (2013)CrossRefGoogle Scholar
  9. 9.
    Q.H. Tran, V.Q. Nguyen, A.T. Le, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013)CrossRefADSGoogle Scholar
  10. 10.
    X. Zhang, H. Niu, J. Yan, Y. Cai, Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 375, 186 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Prucek et al., The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32, 4704 (2011)CrossRefGoogle Scholar
  12. 12.
    W. Ping, X.C. Zhang, J.P. Li, Y. Lu, H.H. Li, Y.N. Ma, W.D. Wang, S.H. Yu, Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem. 21, 4593 (2011)CrossRefGoogle Scholar
  13. 13.
    D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes. Chem. Rev. 106, 1105 (2006)CrossRefGoogle Scholar
  14. 14.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010)CrossRefGoogle Scholar
  15. 15.
    W. Yuan, G. Jiang, J. Che, X. Qi, R. Xu, M.W. Chang, Y. Chen, S.Y. Lim, J. Dai, M.C. Park, Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects. J. Phys. Chem. C 112, 18754 (2008)CrossRefGoogle Scholar
  16. 16.
    A.B. Castle, E.G. Espino, C.N. Delgado, H. Terrones, M. Terrones, S. Hussain, Hydroxyl-functionalized and N-doped multiwalled carbon nanotubes decorated with silver nanoparticles preserve cellular function. ACS Nano 5, 2458 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Niu, Y. Han, J. Wu, N. Yu, Q. Xu, Synthesis of one-dimensional carbon nanomaterials wrapped by silver nanoparticles and their antibacterial behavior. J. Phys. Chem. C 114, 12728 (2010)CrossRefGoogle Scholar
  18. 18.
    M.R. Das, R.K. Sarma, R. Saikia, V.S. Kale, M.V. Shelke, P. Sengupta, Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf. B Biointerface 83, 16 (2011)CrossRefGoogle Scholar
  19. 19.
    Q. Bao, D. Zhang, P. Qi, Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 360, 463 (2011)CrossRefGoogle Scholar
  20. 20.
    S.W. Chook, C.H. Chia, S. Zakaria, M.K. Ayob, K.L. Chee, N.M. Huang, H.M. Neoh, H.N. Lim, R. Jamal, R. Rahman, Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Res. Lett. 7, 541 (2012)CrossRefADSGoogle Scholar
  21. 21.
    V.H. Nguyen, B.K. Kim, Y.L. Jo, J.J. Shim, Preparation and antibacterial activity of silver nanoparticles-decorated graphene composite. J. Supercrit. Fluids 72, 28 (2012)CrossRefGoogle Scholar
  22. 22.
    J.D. Kim, H. Yun, G.C. Kim, C.W. Lee, H.C. Choi, Antibacterial activity and reusability of CNT–Ag and GO–Ag nanocomposites. Appl. Surf. Sci. 283, 227 (2013)CrossRefADSGoogle Scholar
  23. 23.
    M.R. Das, R.K. Sarma, S.C. Borah, R. Kumari, R. Saikia, A.B. Deshmukh, M.V. Shelke, P. Sengupta, S. Szunerits, R. Boukherroub, The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids Surf. B Biointerface 105, 128 (2013)CrossRefGoogle Scholar
  24. 24.
    N.T. Lan, N.D. Dung, N. Tu, P.T. Huy, Synthesis of graphene oxide by a modified Hummer method. Vietnam J. Chem. 51, 719 (2013)Google Scholar
  25. 25.
    N.T. Lan et al., Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization. J. Alloys Comp. 615, 843 (2014)CrossRefGoogle Scholar
  26. 26.
    A.T. Le, L.T. Tam, P.D. Tam, P.T. Huy, T.Q. Huy, N.V. Hieu, A.A. Kudrinskiy, Y.A. Krutyakov, Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Mater. Sci. Eng. C 30, 910 (2010)CrossRefGoogle Scholar
  27. 27.
    A.T. Le, P.T. Huy, L.T. Tam, P.D. Tam, N.V. Hieu, T.Q. Huy, Novel silver nanoparticles: synthesis, properties and applications. Int. J. Nanotechnol. 8, 278 (2011)CrossRefADSGoogle Scholar
  28. 28.
    M. Sakamoto, M. Fujistuka, T. Majima, Light as construction tool of metal nanoparticles: synthesis and mechanism. J. Photochem. Photobiol. C Photochem. Rev. 10, 33 (2009)CrossRefGoogle Scholar
  29. 29.
    J.H. Jung, G.B. Hwang, J.E. Lee, G.N. Bae, Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 27, 10256 (2011)CrossRefGoogle Scholar
  30. 30.
    P. Gunawan et al., Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control. ACS Nano 5, 10033 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, T. Pal, Silver Nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion. ACS Appl. Mater. Interfaces 5, 8724 (2013)CrossRefGoogle Scholar
  32. 32.
    E.K. Jeon, E. Seo, E. Lee, W. Lee, M.K. Um, B.S. Kim, Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chem. Commun. 49, 3392 (2013)CrossRefGoogle Scholar
  33. 33.
    M.J. Hajipour et al., Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499 (2012)CrossRefGoogle Scholar
  34. 34.
    O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731 (2010)CrossRefGoogle Scholar
  35. 35.
    S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971 (2011)CrossRefGoogle Scholar
  36. 36.
    W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, Graphene-based antibacterial paper. ACS Nano 4, 4317 (2010)CrossRefGoogle Scholar
  37. 37.
    S. Liu, A. Keong, R. Xu, J. Wei, C.M. Tan, Y. Yanga, Y. Chen, Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale 2, 2744 (2010)CrossRefADSGoogle Scholar
  38. 38.
    B. Wu, Y. Kuang, X. Zhang, J. Chen, Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today 6, 75 (2011)CrossRefGoogle Scholar
  39. 39.
    M. Baro, P. Nayak, T.T. Baby, S. Ramaprabhu, Green approach for the large-scale synthesis of metal/metal oxide nanoparticle decorated multiwalled carbon nanotubes. J. Mater. Chem. A 1, 482 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ngo Xuan Dinh
    • 1
  • Do Thi Chi
    • 1
  • Nguyen Thi Lan
    • 1
  • Hoang Lan
    • 1
  • Hoang Van Tuan
    • 2
  • Nguyen Van Quy
    • 3
  • Vu Ngoc Phan
    • 1
  • Tran Quang Huy
    • 4
  • Anh-Tuan Le
    • 1
  1. 1.Department of Nanoscience and Nanotechnology, Advanced Institute for Science and Technology (AIST)Hanoi University of Science and Technology (HUST)HanoiVietnam
  2. 2.Center for Experimental BiologyNational Center for Technological ProgressHanoiVietnam
  3. 3.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and Technology (HUST)HanoiVietnam
  4. 4.National Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam

Personalised recommendations