Applied Physics A

, Volume 118, Issue 1, pp 207–215 | Cite as

Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber

  • Somak BhattacharyyaEmail author
  • Saptarshi Ghosh
  • Devkinandan Chaurasiya
  • Kumar Vaibhav Srivastava


In this paper, a polarization-independent metamaterial absorber with enhanced bandwidth at two separate frequency bands is proposed over wide angle of incidence. The proposed structure consists of two layers of dielectric substrate. The unit cell is designed on the top surfaces of both the layers of the dielectric by parametric optimization in such a way that bandwidth-enhanced absorptions occur in C and X bands. The proposed structure is fabricated, and experimental results are in good agreement with the simulated responses. This bandwidth-enhanced dual-band absorption nature is maintained for any angle of polarization under normal incidence, thus making the absorber polarization independent in nature. The structure also shows bandwidth-enhanced dual-band absorptions over wide angle of incidence up to 45° under TE polarization and 30° under TM polarization. Moreover, the proposed structure is ultra-thin, having total thickness of 3.2 mm, ~λ/14 and λ/10 with respect to the center frequencies of two absorption bands.


Ground Plane Anechoic Chamber Metamaterial Absorber Surface Current Density Incident Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors want to acknowledge the staffs of PCB fabrication facility laboratory of Electrical Engineering Department, IIT Kanpur for fabrication of the structure. Also, they want to thank Mr. Anoop Tiwari for his active support during the experimental measurement. The work is funded by DRDO, India, under Project No. DLJ/TC/1025/I/30.


  1. 1.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 38(5721), 534–537 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Cummer, B.I. Popa, D. Schurig, D.R. Smith, J.B. Pendry, Full wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74, 036621 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    K. Alici, E. Ozbay, Radiation properties of a split ring resonator and monopole composites. Phys. Stat. Sol. B 244(4), 1192–1196 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    B. Wang, K.H. Teo, W. Yerazunis, Wireless energy transfer using anisotropic metamaterials, US Patent US 2012/0038219 A1, 16 Feb 2012Google Scholar
  6. 6.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M.H. Li, L. Hua Yang, B. Zhou, X. PengShen, Q. Cheng, T.J. Cui, Ultrathin multiband gigahertz metamaterial absorbers. J. Appl. Phys. 110(1), 014909 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    T. Cao, C.-W. Wei, R.E. Simpson, L. Zhang, M.J. Cryan, Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity. Sci. Rep. 4(4463), 1–9 (2014)Google Scholar
  9. 9.
    H. Tao, N. Landy, C.M. Bingham, X. Zhang, R.D. Averit, W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181–7188 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, L. Deng, Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacer layers. Opt. Lett. 38(7), 1125–1127 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    F. Bilotti, L. Nucci, L. Vegni, An SRR-based microwave absorber. Microw. Opt. Technol. Lett. 48(11), 2171–2175 (2006)CrossRefGoogle Scholar
  12. 12.
    D. Schurig, J.J. Mock, D.R. Smith, Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    S. Bhattacharyya, H. Baradiya, K.V. Srivastava, An ultra thin metamaterial absorber using electric field driven LC resonator with meander lines, in IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Chicago, USA, p. 1, 8–13 July 2012Google Scholar
  14. 14.
    S. Bhattacharyya, K.V. Srivastava, An ultra thin electric field driven LC resonator structure as metamaterial absorbers for dual band applications, in URSI International Symposium on Electromagnetic Theory (EMTS) 2013, Hiroshima, Japan, p. 722, 20–24 May 2013Google Scholar
  15. 15.
    S. Bhattacharyya, K.V. Srivastava, Triple band polarization-independent ultra-thin metamaterial absorber using ELC resonator. J. Appl. Phys. 115(6), 064508 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    L. Huang, H. Chen, Multi-band and polarization insensitive metamaterial absorber. Prog. Electromagn. Res. 113, 103–110 (2011)CrossRefGoogle Scholar
  17. 17.
    X. Shen, T.J. Cui, J. Zhao, H.F. Ma, W.X. Jiang, H. Li, Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19(10), 9401–9407 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S. Bhattacharyya, S. Ghosh, K.V. Srivastava, Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J. Appl. Phys. 114(9), 094514 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    S. Ghosh, S. Bhattacharyya, Y. Kaiprath, K.V. Srivastava, Bandwidth-enhanced polarization insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 115(10), 104503 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    S. Bhattacharyya, S. Ghosh, K.V. Srivastava, Bandwidth enhanced metamaterial absorber using electric field driven LC Resonator for airborne radar applications. Microw. Opt. Technol. Lett. 55(9), 2131–2137 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Ghosh, S. Bhattacharyya, K.V. Srivastava, Bandwidth-enhancement of an ultra-thin polarization insensitive metamaterial absorber. Microw. Opt. Technol. Lett. 56(2), 350–355 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Ghosh, S. Bhattacharyya, K.V. Srivastava, Design of a bandwidth-enhanced ultra thin metamaterial absorber, in Progress in Electromagnetics Research Symposium, Taipei, Taiwan, pp. 1097–1101, 25–28 March 2013Google Scholar
  23. 23.
    Y.J. Yoo, Y.J. Kim, P.V. Tuong, J.V. Rhee, K.W. Kim, W.H. Jang, Y.H. Kim, H. Cheong, Y.P. Lee, Design of highly absorbing metamaterials for infrared frequencies. Opt. Express 21(26), 32484–32490 (2013)CrossRefGoogle Scholar
  24. 24.
    F. Zhao, C. Lu, Z. Zhang, Multiband optical perfect absorber based on plasmonic double grating, in Frontiers in Optics, Arizona, United States, 19–23 Oct 2014Google Scholar
  25. 25.
    G. Dayal, S.A. Ramakrishna, Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks. J. Opt. 15(5), 055106 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    J. Sun, L. Liu, G. Dong, L. Zhou, An extremely broadband metamaterial absorber based on destructive interference. Opt. Express 19(22), 21155–21162 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    H. Xiong, J.S. Hong, C.M. Luo, L.L. Hong, An ultrathin and broadband metamaterial absorber using multi-layer structures. J. Appl. Phys. 114(6), 064109 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    V.T. Pham, J.W. Park, D.L. Vu, H.Y. Zheng, J.Y. Rhee, K.W. Kim, Y.P. Lee, THz-metamaterial absorbers. Adv. Nat. Sci. Nanosci. Nanotechnol. 4(1), 015001 (2013)CrossRefADSGoogle Scholar
  29. 29.
    J.A. Bossard, L. Lin, S. Yun, L. Liu, D.H. Werner, T.S. Meyer, Near-ideal optical metamaterial absorbers with super octave bandwidth. ACS Nano 8(2), 1517–1524 (2014)CrossRefGoogle Scholar
  30. 30.
    W. Li, X. Qiao, Y. Luo, F.X. Qin, H.X. Peng, Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism. Appl. Phys. A 115(1), 229–234 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    W. Yuan, Y. Cheng, Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment. Appl. Phys. A 117(4), 1915–1921 (2014)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    W. Li, J. Valentine, Metamaterial perfect absorber based hot-electron photodetection. Nano Lett. 14(6), 3510–3514 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    L. Keong, Y. Cui, S. Lan, S.P. Rodrigues, M.L. Brongersma, W. Cai, Electrifying photonic mtamaterials for tunable nonlinera optics. Nat. Commun. 5, 4680 (2014)ADSGoogle Scholar
  34. 34.
    L. Wu, M. Zhang, B. Zu, J. Zhao, T. Jiang, Y. Feng, Dual-band asymmetric electromagnetic wave transmission for dual polarizations in chiral metamaterial structure. Appl. Phys. B 117(2), 527–531 (2014)CrossRefGoogle Scholar
  35. 35.
    G. Dayal, S.A. Ramakrishna, Design of highly absorbing metamaterials for infrared frequencies. Opt. Express 20(16), 17503–17508 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Somak Bhattacharyya
    • 1
    Email author
  • Saptarshi Ghosh
    • 1
  • Devkinandan Chaurasiya
    • 1
  • Kumar Vaibhav Srivastava
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations