Applied Physics A

, Volume 118, Issue 1, pp 27–35 | Cite as

Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes

Rapid communication

Abstract

In the present work, a detailed Raman spectroscopy investigation on the single-walled carbon nanotubes (SWCNTs) filled with praseodymium chloride, terbium chloride and thulium chloride was performed. The salts were incorporated inside the SWCNTs by a capillary filling method using melts, and the high-resolution transmission electron microscopy data proved the high filling degree of the nanotube channels. A thorough analysis of the radial breathing mode and G-band of the Raman spectra of the pristine and filled SWCNTs showed that the encapsulated salts cause acceptor doping of the host nanotubes, and the doping efficiency depends on the compound. The incorporated thulium chloride has the strongest doping effect on the SWCNTs, whereas praseodymium chloride has the weakest effect. It was found that the encapsulated salts modify more significantly the electronic structure of metallic nanotubes than semiconducting SWCNTs.

Notes

Acknowledgments

SWCNTs were synthesized by Dr. A.V. Krestinin (Institute of Problems of Chemical Physics RAS, Chernogolovka). Author thanks Dr. A.V. Egorov (Lomonosov Moscow State University) for the HRTEM measurements and Dr. L.V. Yashina (OJSC “Giredmet”) for the XPS measurements. Author acknowledges the Austrian Academy of Sciences for a DOC-fFORTE fellowship.

References

  1. 1.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes (Imperial College Press, London, 1998)CrossRefGoogle Scholar
  2. 2.
    M. Monthioux, Carbon 40, 1809 (2002)CrossRefGoogle Scholar
  3. 3.
    M. Monthioux, E. Flahaut, J.P. Cleuziou, J. Mater. Res. 21, 2774 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    M.V. Kharlamova, Physics-Uspekhi 56, 1047 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A.A. Eliseev, M.V. Kharlamova, M.V. Chernysheva, A.V. Lukashin, YuD Tretyakov, A.S. Kumskov, N.A. Kiselev, Russ. Chem. Rev. 78, 833 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    P.M. Ajayan, O.Z. Zhou, Top. Appl. Phys. 80, 391 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    M. Endo, M.S. Strano, P.M. Ajayan, Top. Appl. Phys. 111, 13 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Sloan, S. Friedrichs, R.R. Meyer, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Inorg. Chim. Acta 330, 1 (2002)CrossRefGoogle Scholar
  9. 9.
    J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Compets. Rendus. Phys. 4, 1063 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    A.I. Kirkland, M.R. Meyer, J. Sloan, J.L. Hutchison, Microsc. Microanal. 11, 401 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    E. Philp, J. Sloan, A.I. Kirkland, R.R. Meyer, S. Friedrichs, J.L. Hutchison, M.L.H. Green, Nat. Mater. 2, 788 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    R.R. Meyer, J. Sloan, R.E. Dunin-Borkowski, A.I. Kirkland, M.C. Novotny, S.R. Bailey, J.L. Hutchison, M.L.H. Green, Science 289, 1324 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    L.V. Yashina, A.A. Eliseev, M.V. Kharlamova, A.A. Volykhov, A.V. Egorov, S.V. Savilov, A.V. Lukashin, R. Puettner, A.I. Belogorokhov, J. Phys. Chem. C 115, 3578 (2011)CrossRefGoogle Scholar
  14. 14.
    M.V. Kharlamova, JETP Lett. 98, 272 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Rao, Chem. Mater. 12, 202 (2000)CrossRefGoogle Scholar
  16. 16.
    P. Corio, A.P. Santos, P.S. Santos, M.L.A. Temperini, V.W. Brar, M.A. Pimenta, M.S. Dresselhaus, Chem. Phys. Lett. 383, 475 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    M.V. Kharlamova, J.J. Niu, J. Exp. Theor. Phys. 115, 485 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    M.V. Kharlamova, J.J. Niu, JETP Lett. 95, 314 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M.V. Kharlamova, J.J. Niu, Appl. Phys. A 109, 25 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, Y. Iwasa, Nat. Mater. 2, 683 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    L.J. Li, A.N. Khlobystov, J.G. Wiltshire, G.A.D. Briggs, R.J. Nicholas, Nat. Mater. 4, 481 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    H. Shiozawa, T. Pichler, C. Kramberger, M. Rummeli, D. Batchelor, Z. Liu, K. Suenaga, H. Kataura, S.R.P. Silva, Phys. Rev. Lett. 102, 046804 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    C.G. Xu, J. Sloan, G. Brown, S. Bailey, V.C. Williams, S. Friedrichs, K.S. Coleman, E. Flahaut, J.L. Hutchison, R.E. Dunin-Borkowski, M.L.H. Green, Chem. Commun. 24, 2427 (2000)CrossRefGoogle Scholar
  24. 24.
    B.C. Satishkumar, A. Taubert, D.E. Luzzi, J. Nanosci. Nanotechnol. 3, 159 (2003)CrossRefGoogle Scholar
  25. 25.
    R. Kitaura, D. Ogawa, K. Kobayashi, T. Saito, S. Ohshima, T. Nakamura, H. Yoshikawa, K. Awaga, H. Shinohara, Nano Res. 1, 152 (2008)CrossRefGoogle Scholar
  26. 26.
    P. Ayala, R. Kitaura, R. Nakanishi, H. Shiozawa, D. Ogawa, P. Hoffmann, H. Shinohara, T. Pichler, Phys. Rev. B 83, 085407 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Chem. Commun. 13, 1319 (2002)CrossRefGoogle Scholar
  28. 28.
    S. Friedrichs, U. Falke, M.L.H. Green, ChemPhysChem 6, 300 (2005)CrossRefGoogle Scholar
  29. 29.
    S. Friedrichs, A.I. Kirkland, R.R. Meyer, J. Sloan, M.L.H. Green, Microsc. Microanal. 11, 421 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    H.G. Kahle, Z. Phys. 145, 361 (1956)ADSCrossRefGoogle Scholar
  31. 31.
    G.H. Dieke, S. Singh, J. Chem. Phys. 35, 555 (1961)ADSCrossRefGoogle Scholar
  32. 32.
    H. Crosswhite, G.H. Dieke, J. Chem. Phys. 35, 1535 (1961)ADSCrossRefGoogle Scholar
  33. 33.
    E.H. Carlson, G.H. Dieke, J. Chem. Phys. 34, 1602 (1961)ADSCrossRefGoogle Scholar
  34. 34.
    E.H. Carlson, H.S. Adams, J. Chem. Phys. 51, 388 (1969)ADSCrossRefGoogle Scholar
  35. 35.
    M.S. Dresselhaus, P.C. Eklund, Adv. Phys. 49, 705 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    M.V. Kharlamova, A.A. Eliseev, L.V. Yashina, D.I. Petukhov, C.P. Liu, C.Y. Wang, D.A. Semenenko, A.I. Belogorokhov, JETP Lett. 91, 196 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    M.V. Kharlamova, L.V. Yashina, A.A. Eliseev, A.A. Volykhov, V.S. Neudachina, M.M. Brzhezinskaya, T.S. Zyubina, A.V. Lukashin, YuD Tretyakov, Phys. Status Sol. B 249, 2328 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    A.A. Eliseev, L.V. Yashina, N.I. Verbitskiy, M.M. Brzhezinskaya, M.V. Kharlamova, M.V. Chernysheva, A.V. Lukashin, N.A. Kiselev, A.S. Kumskov, B. Freitag, A.V. Generalov, A.S. Vinogradov, Y.V. Zubavichus, E. Kleimenov, M. Nachtegaal, Carbon 50, 4021 (2012)CrossRefGoogle Scholar
  40. 40.
    A.A. Eliseev, L.V. Yashina, M.M. Brzhezinskaya, M.V. Chernysheva, M.V. Kharlamova, N.I. Verbitsky, A.V. Lukashin, N.A. Kiselev, A.S. Kumskov, R.M. Zakalyuhin, J.L. Hutchison, B. Freitag, A.S. Vinogradov, Carbon 48, 2708 (2010)CrossRefGoogle Scholar
  41. 41.
    M.V. Kharlamova, L.V. Yashina, A.A. Volykhov, J.J. Niu, V.S. Neudachina, M.M. Brzhezinskaya, T.S. Zyubina, A.I. Belogorokhov, A.A. Eliseev, Eur. Phys. J. B 85, 34 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    M.V. Kharlamova, Appl. Phys. A 111, 725 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    M.V. Kharlamova, L.V. Yashina, A.V. Lukashin, J. Mater. Sci. 48, 8412 (2013)CrossRefGoogle Scholar
  44. 44.
    M.V. Kharlamova, L.V. Yashina, A.V. Lukashin, Appl. Phys. A 112, 297 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    M.V. Kharlamova, M. Sauer, T. Saito, S. Krause, X.J. Liu, K. Yanagi, T. Pichler, H. Shiozawa, Phys. Status Sol. B 250, 2575 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555 (1999)CrossRefGoogle Scholar
  47. 47.
    M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G.S. Filho, R. Saito, Carbon 40, 2043 (2002)CrossRefGoogle Scholar
  48. 48.
    P.T. Araujo, I.O. Maciel, P.B.C. Pesce, M.A. Pimenta, S.K. Doorn, H. Qian, A. Hartschuh, M. Steiner, L. Grigorian, K. Hata, A. Jorio, Phys. Rev. B 77, 241403 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    A. Jorio, M. Pimenta, A.S. Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus, New J. Phys. 5, 139 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    M. Fouquet, H. Telg, J. Maultzsch, Y. Wu, B. Chandra, J. Hone, T.F. Heinz, C. Thomsen, Phys. Rev. Lett. 102, 075501 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    S.D.M. Brown, P. Corio, A. Marucci, M.S. Dresselhaus, M.A. Pimenta, K. Kneipp, Phys. Rev. B 61, R5137 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    S. Piscanec, M. Lazzeri, J. Robertson, A.C. Ferrari, F. Mauri, Phys. Rev. B 75, 035427 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    A. Jorio, A.G. Souza, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito, Phys. Rev. B 65, 155412 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    M. Sauer, H. Shiozawa, P. Ayala, G. Ruiz-Soria, X. Liu, A. Chernov, S. Krause, K. Yanagi, H. Kataura, T. Pichler, Carbon 59, 237 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Materials ScienceLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations