Advertisement

Applied Physics A

, Volume 118, Issue 1, pp 23–26 | Cite as

Superconducting tin core fiber

  • Daniel HomaEmail author
  • Yongxuan Liang
  • Cary Hill
  • Gurbinder Kaur
  • Gary Pickrell
Rapid communication

Abstract

In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50–300 microns and overall diameters of 125–800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques.

Keywords

Liquid Helium Fuse Quartz Fiber Drawing Fiber Design Yttrium Barium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Badding, in: Optical Fiber Communication Conference, Optical Society of America, 2013, pp. OW4H. 1Google Scholar
  2. 2.
    M.A. Schmidt, in Proc. of SPIE Vol, 2014, pp. 915774–915771Google Scholar
  3. 3.
    B.L. Scott, G.R. Pickrell, Processing and Properties of Advanced Ceramics and Composites V: Ceramic Transactions, vol. 240 (Wiley, Hoboken, New Jersey, 2013) p. 65Google Scholar
  4. 4.
    P.J. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril, B.R. Jackson, D.-J. Won, F. Zhang, E.R. Margine, Science 311, 1583–1586 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    B. Lee, S. Roh, J. Park, Opt. Fiber Technol. 15, 209–221 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    D.J. Lipomi, R.V. Martinez, M.A. Kats, S.H. Kang, P. Kim, J. Aizenberg, F. Capasso, G.M. Whitesides, Nano Lett. 11, 632–636 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A.C. Peacock, J.R. Sparks, N. Healy, Laser Photonics Rev. 8, 53–72 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A.M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R.R. Rice, D.R. Powers, Opt. Express 16, 18675–18683 (2008)Google Scholar
  9. 9.
    B.L. Scott, K. Wang, G. Pickrell, IEEE Photonics Technol. Lett. 21, 1798–1800 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    G. Pickrell, N. Manjooran, N. Goel, D. Kominsky, J. Non-Cryst. Solids 352, 500–504 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, R. Rice, Opt. Fiber Technol. 16, 399–408 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    N.F. Baril, R. He, T.D. Day, J.R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A.C. Peacock, N. Healy, J. Am. Chem. Soc. 134, 19–22 (2011)CrossRefGoogle Scholar
  13. 13.
    J.R. Sparks, P.J. Sazio, V. Gopalan, J.V. Badding, Annu. Rev. Mater. Res. 43, 527–557 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J. Sazio, V. Gopalan, J.V. Badding, Adv. Mater. 25, 1460 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Badding, R.J. Hempel, J. Sparks, V. Gopalan, N. Healy, P. Mehta, A. Peacock, (2013)Google Scholar
  16. 16.
    A. Micco, A. Ricciardi, G. Quero, A. Crescitelli, W. Bock, A. Cusano, Opt. Lett. 39, 861–864 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Anders, M.G. Blamire, F.I. Buchholz, D.G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H.J.M. ter Brake, H. Toepfer, J.C. Villegier, A.M. Zagoskin, A.B. Zorin, Physica C: Superconductivity 470, 2079–2126 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    M. Gombos, S. Romano, I. Rendina, R. Ciancio, G. Carapella, V. Mocella, in SPIE Optics + Optoelectronics, International Society for Optics and Photonics (SPIE, Bellingham, Washington, 2013), pp. 87711B–87711B–87719Google Scholar
  19. 19.
    M. Li, Z. Dai, W. Cui, Z. Wang, F. Katmis, P. Le, J. Wang, L. Wu, Y. Zhu, arXiv preprint arXiv:1403.1283, (2014)Google Scholar
  20. 20.
    B.G. Ghamsari, A.H. Majedi, IEEE Trans. Appl. Supercond. 17, 590–593 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    D. Homa, G. Kaur, G. Pickrell, Y. Liang, Cryogenics 61, 25–30 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    D. Homa, Y. Liang, G. Pickrell, Appl. Phys. Lett. 103, 082601 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    D. Homa, Y. Liang, G. Pickrell, J. Supercond. Novel Magn. 27, 891–895 (2014)CrossRefGoogle Scholar
  24. 24.
    D. Homa, G. Pickrell, G. Kaur, Mater. Lett. 121, 101–104 (2014)CrossRefGoogle Scholar
  25. 25.
    Y.J. Hsu, S.Y. Lu, Y.F. Lin, Small 2, 268–273 (2006)CrossRefGoogle Scholar
  26. 26.
    M. Croitoru, A. Shanenko, F. Peeters, Phys. Rev. B 76, 024511 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    W. Grodkiewicz, Mater. Res. Bull. 10, 1085–1090 (1975)CrossRefGoogle Scholar
  28. 28.
    G. Taylor, Phys. Rev. 23, 655 (1924)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel Homa
    • 1
    Email author
  • Yongxuan Liang
    • 1
  • Cary Hill
    • 1
  • Gurbinder Kaur
    • 1
  • Gary Pickrell
    • 1
  1. 1.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations