Applied Physics A

, Volume 117, Issue 4, pp 1599–1605

The future of focused electron beam-induced processing

Invited paper

Abstract

A perspective is sketched for the field of focused electron beam-induced processing (FEBIP). The FEBIP lithography technique is compared to the very successful resist-based electron beam lithography (EBL) technique. The advantages of FEBIP over EBL are identified, the main advantage being its high spatial resolution. This will enable FEBIP to become an important lithography technique for the fabrication of devices with critical dimension in the range between 1 and 20 nm and serve as a complementary technique to EBL. It will be discussed what needs to be done to achieve this and what the potential applications are.

References

  1. 1.
    N. Silvis-Cividjian, C.W. Hagen, Electron-beam-induced nanometer-scale deposition. Adv. Imaging Electron Phys. 143, 1–235 (2006)CrossRefGoogle Scholar
  2. 2.
    S.J. Randolph, J.D. Fowlkes, P.D. Rack, Crit. Rev. Solid State Mater. Sci. 31, 55–89 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. B26, 1197 (2008)CrossRefGoogle Scholar
  4. 4.
    W.F. van Dorp, C.W. Hagen, J. Appl. Phys. 104, 081301 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    N. Silvis-Cividjian, C.W. Hagen, P. Kruit, J. Appl. Phys. 98, 084905 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Z.J. Ding, R. Shimizu, J. Microsc. 154, 193 (1989)CrossRefGoogle Scholar
  7. 7.
    W.F. van Dorp, B. van Someren, C.W. Hagen, P. Kruit, P.A. Crozier, Nano Lett. 5, 1303 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    W.F. van Dorp, C.W. Hagen, P.A. Crozier, P. Kruit, Nanotechnology 19, 225305 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    W.F. van Dorp, X. Zhang, B.L. Feringa, T.W. Hansen, J.B. Wagner, J.T.M. de Hosson, ACS Nano 6, 10076 (2012)CrossRefGoogle Scholar
  10. 10.
    D.A. Smith, J.D. Fowlkes, P.D. Rack, Nanotechnology 18, 265308 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    J.D. Fowlkes, P.D. Rack, ACS Nano 4, 1619 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Botman, J.J.L. Mulders, C.W. Hagen, Nanotechnology 20, 372001 (2009)CrossRefGoogle Scholar
  13. 13.
    H. Hiroshima, M. Komuro, Nanotechnology 9, 108 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    W.F. van Dorp, S. Lazar, C.W. Hagen, P. Kruit, J. Vac. Sci. Technol. B25, 1603 (2007)CrossRefGoogle Scholar
  15. 15.
    P.A. Crozier, J. Vac. Sci. Technol. B26, 249 (2008)CrossRefGoogle Scholar
  16. 16.
    H. Plank, D.A. Smith, T. Haber, P.D. Rack, F. Hofer, ACS Nano 6, 286 (2012)CrossRefGoogle Scholar
  17. 17.
    H. Plank, C. Gspan, M. Dienstleder, G. Kothleitner, F. Hofer, Nanotechnology 19, 485302 (2008)CrossRefGoogle Scholar
  18. 18.
    R. Winkler, J. Fowlkes, A. Szkudlarek, I. Utke, P.D. Rack, H. Plank, ACS Appl. Mater. Interfaces 6, 2987 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Ochiai, J. Fujita, S. Matsui, J. Vac. Sci. Technol. B14, 3887 (1996)CrossRefGoogle Scholar
  20. 20.
    H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum, J. Vac. Sci. Technol. B6, 477 (1988)CrossRefGoogle Scholar
  21. 21.
    S. Hari, C.W. Hagen, T. Verduin, P. Kruit, J. Micro Nanolithography MEMS MOEMS 13, 033002 (2014)CrossRefGoogle Scholar
  22. 22.
    A.E. Grigorescu, C.W. Hagen, Nanotechnology 20, 292001 (2009)CrossRefGoogle Scholar
  23. 23.
    K. Edinger, H. Becht, J. Bihr, V. Boegli, M. Budach, T. Hofmann, H.W.P. Koops, P. Kuschnerus, J. Oster, P. Spies, B. Weyrauch, J. Vac. Sci. Technol. B22, 2902 (2004)CrossRefGoogle Scholar
  24. 24.
    J.C. van Oven, F. Berwald, K.K. Berggren, P. Kruit, C.W. Hagen, J. Vac. Sci. Technol. B29, 06F305 (2011)Google Scholar
  25. 25.
    J.D. Wnuk, S.G. Rosenberg, J.M. Gorham, W.F. van Dorp, C.W. Hagen, D.H. Fairbrother, Surf. Sci. 605, 257 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    J.D. Wnuk, J.M. Gorham, S.G. Rosenberg, W.F. van Dorp, T.E. Madey, C.W. Hagen, D.H. Fairbrother, J. Phys. Chem. C113, 2487 (2009)Google Scholar
  27. 27.
    W.F. van Dorp, J.D. Wnuk, J.M. Gorham, D.H. Fairbrother, T.E. Madey, C.W. Hagen, J. Appl. Phys. 106, 074903 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    S.G. Rosenberg, M. Barclay, D.H. Fairbrother, Phys. Chem. Chem. Phys. 15, 4002 (2013)CrossRefGoogle Scholar
  29. 29.
    K. Landheer, S.G. Rosenberg, L. Bernau, P. Swiderek, I. Utke, C.W. Hagen, D.H. Fairbrother, J. Phys. Chem. C115, 17452 (2011)Google Scholar
  30. 30.
    N.A. Roberts, J.D. Fowlkes, G.A. Magel, P.D. Rack, Nanoscale 5, 408 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    F. Porrati, R. Sachser, C.H. Schwalb, A.S. Frangakis, M. Huth, J. Appl. Phys. 109, 063715 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    S. Mehendale, J.J.L. Mulders, P.H.F. Trompenaars, Nanotechnology 24, 145303 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    H. Plank, J.H. Noh, J.D. Fowlkes, K. Lester, B.B. Lewis, P.D. Rack, ACS Appl. Mater. Interfaces 6, 1018 (2014)CrossRefGoogle Scholar
  34. 34.
    B. Geier, C. Gspan, R. Winkler, R. Schmied, J.D. Fowlkes, H. Fitzek, S. Rauch, J. Rattenberger, P.D. Rack, H. Plank, J. Phys. Chem. C118, 14009 (2014)Google Scholar
  35. 35.
    H. Miyazoe, I. Utke, H. Kikuchi, S. Kiriu, V. Friedli, J. Michler, K. Terashima, J. Vac. Sci. Technol. B28, 744 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner., Beilstein J. Nanotechnol. 3, 597–619 (2012)Google Scholar
  37. 37.
    F. Porrati, B. Kämpken, A. Terfort, M. Huth, J. Appl. Phys. 113, 053707 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    R.C. Che, M. Takeguchi, M. Shimojo, W. Zhang, K. Furuya, Appl. Phys. Lett. 87, 223109 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    M. Winhold, C.H. Schwalb, F. Porrati, R. Sachser, A.S. Frangakis, B. Kämpken, A. Terfort, N. Auner, M. Huth, ACS Nano 5, 9675 (2011)CrossRefGoogle Scholar
  40. 40.
    F. Porrati, E. Begun, M. Winhold, C.H. Schwalb, R. Sachser, A.S. Frangakis, M. Huth, Nanotechnology 23, 185702 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    A. Mohammadi-Gheidari, C.W. Hagen, P. Kruit, J. Vac. Sci. Technol. B28, C6G5 (2010)Google Scholar
  42. 42.
    A. Mohammadi-Gheidari, P. Kruit, Nucl. Instr. Meth. Phys. Res. A645, 60 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    P.C. Post, A. Mohammadi-Gheidari, C.W. Hagen, P. Kruit, J. Vac. Sci. Technol. B29, 06F310 (2011)Google Scholar
  44. 44.
    A. Casares, T. Kemen, R. Knippelmeyer, G. Fritz, J. Greschner, S. Kalt, Carl Zeiss SMT GmbH and Applied Materials Israel Ltd., Patent US 8039813B2, Oct. 18 (2011)Google Scholar
  45. 45.
    M.A. McCord, P. Petric, U. Ummethala, A. Carroll, S. Kojima, L. Grella, C.F. Bevis, Proc. SPIE 8323, 832311 (2012)CrossRefGoogle Scholar
  46. 46.
    H. Otaki, M. Enyama, H. Ohta, Hitachi High-Technologies Corporation, Patent US 8350214B2, Jan. 8 (2013)Google Scholar
  47. 47.
    M.J. Wieland, H. Derks, H. Gupta, T. Van de Peut, F.M. Postma, A.H.V. Van Veen, Y. Zhang, Proc. SPIE 7637, 76371Z (2010)CrossRefGoogle Scholar
  48. 48.
    Web of Science™, a database by Thomson Reuters (2014)Google Scholar
  49. 49.
    SNM-project ‘Single nanometer manufacturing for beyond CMOS devices’, European Union Grant Agreement No. 318804Google Scholar
  50. 50.
    D.K. Lam, E.D. Liu, T. Prescop, M.C. Smayling, Proc. SPIE 7970, 797011 (2011)CrossRefGoogle Scholar
  51. 51.
    EU network Chemistry for ELectron Induced NAnofabrication (CELINA), COST Action CM1301 (CELINA)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Imaging Physics, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands

Personalised recommendations