Applied Physics A

, Volume 118, Issue 4, pp 1239–1246 | Cite as

Controlling ZnO nanowire surface density during its growth by altering morphological properties of a ZnO buffer layer by UV laser irradiation

  • Tetsuya Shimogaki
  • Hirotaka Kawahara
  • Shihomi Nakao
  • Mitsuhiro Higashihata
  • Hiroshi Ikenoue
  • Yoshiki Nakata
  • Daisuke Nakamura
  • Tatsuo Okada
Article

Abstract

Zinc oxide (ZnO) nanocrystals, which are characterized by their configurations and fine structures, are unique oxide semiconductors. In this report, it is demonstrated that the number density of ZnO nanowires can be controlled by proper treatments of the buffer layer with ultraviolet laser irradiation. ZnO nanowires were synthesized on the locally laser-irradiated ZnO buffer layer using nanoparticle-assisted pulsed-laser deposition (NAPLD). The number density of ZnO nanowires decreased in the region laser-irradiated with <300 mJ/cm2, whereas it increased in the region laser-irradiated with more than 400 mJ/cm2. Effects of laser irradiation on ZnO buffer layers were investigated by atomic force microscopy, Kelvin probe force microscopy (KPFM), Raman spectroscopy, and X-ray diffraction analyses. In particular, the effects of laser irradiation on the surface work functions of ZnO buffer layers were investigated by KPFM, which is reported for the first time. Additionally, periodically aligned ZnO sub-microcrystals were fabricated as an application of controlling the number density of ZnO nanowires on micropatterned ZnO buffer layers using the four-beam interfered third harmonic of a Nd:YAG laser followed by NAPLD. ZnO sub-microcrystals can be used to fabricate field emitter arrays and can be developed for the application of ZnO nano/microcrystals due to their high throughput.

Abbreviations

ZnO

Zinc oxide

UV

Ultraviolet

LED

Light emitting diode

LD

Laser diode

PLD

Pulsed-laser deposition

NAPLD

Nanoparticle-assisted pulsed-laser deposition

SEM

Scanning electron microscopy

AFM

Atomic force microscopy

KPFM

Kelvin probe force microscopy

RMS

Root mean square

XRD

X-ray diffraction

References

  1. 1.
    T. Asokan, G.N. Iyengar, G.R. Nagabhushana, J. Mater. Sci. 22, 2229–2236 (1987)CrossRefADSGoogle Scholar
  2. 2.
    J. Xu, Q. Pan, Y. Shun, Z. Tian, Sens Actuators B 66, 277–279 (2000)CrossRefGoogle Scholar
  3. 3.
    M. Matsuoka, Jpn. J. Appl. Phys. 10, 736–746 (1971)CrossRefADSGoogle Scholar
  4. 4.
    J.H. Lim, C.K. Kang, K.K. Kim, I.K. Park, D.K. Hwang, S.J. Park, Adv. Mater. 18, 2720–2724 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Chu, J.H. Lim, L.J. Mandalapu, Z. Yang, L. Li, J.L. Liu, Appl. Phys. Lett. 92, 152103 (2008)CrossRefADSGoogle Scholar
  6. 6.
    K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S.F. Chichibu, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 97, 013501 (2010)CrossRefADSGoogle Scholar
  7. 7.
    B. Kumar, S.W. Kim, Nano Energy 1, 342–355 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Bai, W. Wu, Y. Qin, N. Cui, D.J. Bayerl, X. Wang, Adv. Funct. Mater. 21, 4464–4469 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Chu, M. Olmedo, Z. Yang, J. Kong, J. Liu, Appl. Phys. Lett. 93, 181106 (2008)CrossRefADSGoogle Scholar
  10. 10.
    J. Chen, L. Aé, Ch. Aichele, M.Ch. Lux-Steiner, Appl. Phys. Lett. 92, 161906 (2008)CrossRefADSGoogle Scholar
  11. 11.
    D.J. Gargas, H. Gao, H. Wang, P. Yang, Nano Lett. 11, 3792–3796 (2011)CrossRefADSGoogle Scholar
  12. 12.
    X.W. Sun, B. Ling, J.L. Zhao, S.T. Tan, Y. Yang, Y.Q. Shen, Z.L. Dong, X.C. Li, Appl. Phys. Lett. 95, 1311124 (2009)Google Scholar
  13. 13.
    Y. Zhao, Y. Jiang, J. Appl. Phys. 103, 114903 (2008)CrossRefADSGoogle Scholar
  14. 14.
    H. Pan, N. Misra, S.H. Ko, C.P. Grigoropoulos, N. Miller, E.E. Haller, O. Dubon, Appl. Phys. A 94, 111–115 (2009)CrossRefADSGoogle Scholar
  15. 15.
    M. Kawakami, A.B. Hartanto, Y. Nakata, T. Okada, Jpn. J. Appl. Phys. 42, 33–35 (2003)CrossRefADSGoogle Scholar
  16. 16.
    M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921–2923 (1991)CrossRefADSGoogle Scholar
  17. 17.
    C.V. Ben, H.D. Cho, T.W. Kang, W. Yang, Thin Solid Films 520, 4622–4625 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Kurbanov, W.C. Yang, T.W. Kang, Appl. Phys. Express 4, 021101 (2011)CrossRefADSGoogle Scholar
  19. 19.
    T. Wermelinger, C. Borgia, C. Solenthaler, R. Spolenak, Acta Mater. 55, 4657–4665 (2007)CrossRefGoogle Scholar
  20. 20.
    M. Rajalakshmi, A.K. Arora, B.S. Bendre, S. Mahamuni, J. Appl. Phys. 87, 2445 (2000)CrossRefADSGoogle Scholar
  21. 21.
    K.A. Alim, V.A. Fonoberov, M. Shamsa, A.A. Balandin, J. Appl. Phys. 97, 124313 (2005)CrossRefADSGoogle Scholar
  22. 22.
    T. Shimogaki, M. Higashihata, D. Nakamura, T. Asano, T. Okada, J. Laser Micro/Nanoeng. 8, 75–78 (2013)CrossRefGoogle Scholar
  23. 23.
    W.T. Chiou, W.Y. Wu, J.M. Ting, Diam. Relat. Mater. 12, 1841–1844 (2003)CrossRefADSGoogle Scholar
  24. 24.
    Y. Nakata, N. Miyanaga, T. Okada, Appl. Surf. Sci. 253, 6555–6557 (2007)CrossRefADSGoogle Scholar
  25. 25.
    B. Voisiat, M. Gedvilas, S. Indrišiūnas, G. Račiukaitis, Phy. Procedia 12, 116–124 (2011)CrossRefADSGoogle Scholar
  26. 26.
    D. Nakamura, T. Shimogaki, S. Nakao, K. Harada, Y. Muraoka, H. Ikenoue, T. Okada, J. Phys. D Appl. Phys. 47, 034014 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tetsuya Shimogaki
    • 1
  • Hirotaka Kawahara
    • 1
  • Shihomi Nakao
    • 1
  • Mitsuhiro Higashihata
    • 1
  • Hiroshi Ikenoue
    • 1
  • Yoshiki Nakata
    • 2
  • Daisuke Nakamura
    • 1
  • Tatsuo Okada
    • 1
  1. 1.Department of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan
  2. 2.Institute of Laser EngineeringOsaka UniversitySuitaJapan

Personalised recommendations