Advertisement

Applied Physics A

, Volume 118, Issue 1, pp 113–118 | Cite as

Novel semiconducting boron carbide/pyridine polymers for neutron detection at zero bias

  • Elena Echeverría
  • Robinson James
  • Umesh Chiluwal
  • Frank L. Pasquale
  • Juan A. Colón Santana
  • Richard Gapfizi
  • Jae-Do Tae
  • M. Sky Driver
  • A. Enders
  • Jeffry A. Kelber
  • P. A. Dowben
Article

Abstract

Thin films containing aromatic pyridine moieties bonded to boron, in the partially dehydrogenated boron-rich icosahedra (B10C2HX), prove to be an effective material for neutron detection applications when deposited on n-doped (100) silicon substrates. The characteristic I–V curves for the heterojunction diodes exhibit strong rectification and largely unperturbed normalized reverse bias leakage currents with increasing pyridine content. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the signatures of complete electron-hole collection. These results suggest that modifications to boron carbide may result in better neutron voltaic materials.

Keywords

Neutron Capture Boron Carbide Neutron Detection Valence Band Maximum Charge Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Defense Threat Reduction Agency (Grant No. HDTRA1-09-1-0060) and the National Aeronautics and Space Administration through Grant 13-EPSCoR-0012. The authors would like to thank Adrien LaVoie for supplying the Si(100) wafers and Shireen Adenwalla for technical assistance and discussion, Gregory S. Engel for the suggestion of pyrazine, A.N. Caruso, for suggestions regarding the signal to noise issues, and George Peterson for the capacitance measurements.

References

  1. 1.
    A.N. Caruso, J. Phys.: Condens. Matter 22, 1–32 (2010). doi: 10.1088/0953-8984/22/44/443201 MathSciNetGoogle Scholar
  2. 2.
    A.N. Caruso, R.B. Billa, S. Balaz, J.I. Brand, P.A. Dowben, J. Phys.: Condens. Matter 16, L139–L146 (2004). doi: 10.1088/0953-8984/16/10/L04 ADSGoogle Scholar
  3. 3.
    B.W. Robertson, S. Adenwalla, A. Harken, P. Welsch, J.I. Brand, P.A. Dowben, J.P. Claassen, Appl. Phys. Lett. 80, 3644–3646 (2002). doi: 10.1063/1.1477942 ADSCrossRefGoogle Scholar
  4. 4.
    B.W. Robertson, S. Adenwalla, A. Harken, P. Welsch, J.I. Brand, J.P. Claassen, N.M. Boag, P.A. Dowben, Proc. SPIE 4785, 226–233 (2002). doi: 10.1117/12.453923 ADSCrossRefGoogle Scholar
  5. 5.
    S. Adenwalla, R. Billa, J.I. Brand, E. Day, M.J. Diaz, A. Harken, A. McMullen-Gunn, R. Padmanabhan, B.W. Robertson, Proc. SPIE 5199, 70–74 (2004). doi: 10.1117/12.506646 ADSCrossRefGoogle Scholar
  6. 6.
    K. Osberg, N. Schemm, S. Balkir, J.I. Brand, M.S. Hallbeck, P.A. Dowben, M.W. Hoffman, IEEE Sens. J. 6, 1531–1538 (2006). doi: 10.1109/JSEN.2006.883905 CrossRefGoogle Scholar
  7. 7.
    K. Osberg, N. Schemm, S. Balkir, J.I Brand, M.S. Hallbeck, P.A. Dowben, IEEE Int. Symp. Circ. (2006) 1179–1182. doi: 10.1109/ISCAS.2006.1692801
  8. 8.
    A.N. Caruso, P.A. Dowben, S. Balkir, N. Schemm, K. Osberg, R.W. Fairchild, O.B. Flores, S. Balaz, A.D. Harken, B.W. Robertson, J.I. Brand, Mater. Sci. Eng. 135, 129–133 (2006). doi: 10.1016/j.mseb.2006.08.049 CrossRefGoogle Scholar
  9. 9.
    E. Day, M.J. Diaz, S. Adenwalla, J. Phys. D Appl. Phys. 39, 2920–2924 (2006). doi: 10.1088/0022-3727/39/14/007 ADSCrossRefGoogle Scholar
  10. 10.
    N. Hong, J. Mullins, K. Foreman, S. Adenwalla, J. Phys. D Appl. Phys. 43, 275101 (2010). doi: 10.1088/0022-3727/43/27/275101 ADSCrossRefGoogle Scholar
  11. 11.
    N. Hong, L. Crow, S. Adenwalla, Nucl. Intrumen. Methods Phys. Res. A 708, 19–23 (2013). doi: 10.1016/j.nima.2013.12.105 ADSCrossRefGoogle Scholar
  12. 12.
    D. Emin, T.L. Aselage, J. Appl. Phys. 97, 013529 (2005). doi: 10.1063/1.1823579 ADSCrossRefGoogle Scholar
  13. 13.
    D.S. McGregor, T.C. Unruh, W.J. McNeil, Nucl. Instrum. Methods A 591, 530–533 (2008). doi: 10.1016/j.nima.2008.03.002 ADSCrossRefGoogle Scholar
  14. 14.
    J. Uher, S. Pospisil, V. Linhart, M. Schieber, Appl. Phys. Lett. 90, 124101 (2007). doi: 10.1063/1.2713869 ADSCrossRefGoogle Scholar
  15. 15.
    J. Li, R. Dahal, S. Majety, J.Y. Lin, H.X. Jiang, Nucl. Instrum. Methods A 654, 417–420 (2011). doi: 10.1016/j.nima.2011.07.040 ADSCrossRefGoogle Scholar
  16. 16.
    S. Majety, J. Li, X.K. Cao, R. Dahal, J.Y. Lin, H.X. Jiang, in Proceedings of SPIE 8507, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV, 85070R (2012). doi: 10.1117/12.940748
  17. 17.
    T.C. Doan, S. Majety, S. Grenadier, J. Li, J.Y. Lin, H.X. Jiang, Nucl. Instrum. Methods Phys. Res. A 748, 84–90 (2014). doi: 10.1016/j.nima.2014.02.031 ADSCrossRefGoogle Scholar
  18. 18.
    Y. Kumashiro, J. Mater. Res. 5, 2933–2947 (1990). doi: 10.1557/JMR.1990.2933 ADSCrossRefGoogle Scholar
  19. 19.
    Y. Kumashiro, T. Yokoyama, A. Sato, Y. Ando, J. Solid State Chem. 133, 314–321 (1997). doi: 10.1006/jssc.1997.7493 ADSCrossRefGoogle Scholar
  20. 20.
    J.C. Lund, F. Olschner, F. Ahmed, K.S. Shah, Mater. Res. Soc. Symp. Proc. 162, 601–604 (1989). doi: 10.1557/PROC-162-601 CrossRefGoogle Scholar
  21. 21.
    T.P. Viles, B.A. Brunnett, H. Yoon, J.C. Lund, H. Hermon, D. Buchenauer, K. McCarty, M. Clifft, D. Dibble, R.B. James, Mater. Res. Soc. Symp. Proc. 487, 585–590 (1998). doi: 10.1557/PROC-487-585 CrossRefGoogle Scholar
  22. 22.
    H. Welker, R. Gremmelmaier, Method and device for the sensing of neutrons USPTO 2867727 A (1959)Google Scholar
  23. 23.
    H. Welker, R. Gremmeimaier, Method and device for sensing neutrons USPTO 2988639 A (1961)Google Scholar
  24. 24.
    D. E. Hill, Neutron detector of crystalline boron phosphide, USPTO 3113210 A (1963)Google Scholar
  25. 25.
    S. Bakalova, R. Speller, R.J. Lacey, C. Frost, M. Kuball, Nucl. Instrum. Methods A 700, 140–144 (2013). doi: 10.1016/j.nima.2012.10.035 ADSCrossRefGoogle Scholar
  26. 26.
    Sangeeta, K. Chennakesavulu, D.G. Desai, S.C. Sabharwal, M Alex, M.D. Ghodgaonkar, Nucl. Instrum. Methods A 571, 699–703 (2006). doi: 10.1016/j.nima.2006.10.401
  27. 27.
    Y.V. Burak, B.V. Padlyak, V.M. Shevel, Radiat. Eff. Defect. Solids 157, 1101–1109 (2002). doi: 10.1080/10420150215791 CrossRefGoogle Scholar
  28. 28.
    F.P. Doty, I. Zwieback, W. Ruderman, Solid state neutron detector and method for use. United States patent US 6388260 B1. 2002 May 14Google Scholar
  29. 29.
    E. Siedland, W. Schwertführer, Atomkernenergie 11, 155 (1966)Google Scholar
  30. 30.
    D.J. Wooten. Electric structure of lithium tetraborate [dissertation]. [WPAFB]: Air Force Institute of Technology. 195 p. (2010)Google Scholar
  31. 31.
    Y.V. Burak, V.T. Adamiv, I.M. Teslyuk, V.M. Shevel, Radiat. Meas. 38, 681–684 (2004). doi: 10.1016/j.radmeas.2003.12.029 CrossRefGoogle Scholar
  32. 32.
    B.I. Zadneprovski, N.V. Eremin, A.A. Paskhalov, Funct. Mater. 12, 261–268 (2005)Google Scholar
  33. 33.
    D. Simeone, C. Mallet, P. Dubuisson, G. Baldinozzi, C. Gervais, J. Maquet, J. Nucl. Mater. 277, 1–10 (2000). doi: 10.1016/S0022-3115(99)00149-X ADSCrossRefGoogle Scholar
  34. 34.
    D. Emin, J. Solid State Chem. 179, 2791–2798 (2006). doi: 10.1016/j.jssc.2006.01.014 ADSCrossRefGoogle Scholar
  35. 35.
    M. Carrard, D. Emin, L. Zuppiroli, Phys. Rev. 51, 11270–11274 (1995). doi: 10.1103/PhysRevB.51.11270 CrossRefGoogle Scholar
  36. 36.
    A.N. Caruso, J.I. Brand, P.A. Dowben, Boron carbide particle detectors, United States Patent 7,368,794, issued May 6, 2008Google Scholar
  37. 37.
    F.L. Pasquale, Y. Li, J.C. Du, J.A. Kelber, J. Phys.: Condens. Matter 25, 105801 (2013). doi: 10.1088/0953-8984/25/10/105801 ADSGoogle Scholar
  38. 38.
    F.L. Pasquale, R. James, R. Welch, E. Echeverria, P.A. Dowben, J.A. Kelber, ECS Trans. 53, 303–310 (2013). doi: 10.1149/05301.0303ecst CrossRefGoogle Scholar
  39. 39.
    F.L. Pasquale, J. Liu, P.A. Dowben, J.A. Kelber, Mater. Chem. Phys. 133, 901–906 (2012). doi: 10.1016/j.matchemphys.2012.01.114 CrossRefGoogle Scholar
  40. 40.
    F.A. Valente, H.I. Zagor, Phys. Rev. 69, 55 (1946). doi: 10.1103/PhysRev.69.55 ADSCrossRefGoogle Scholar
  41. 41.
    G.A. Bartholomew, P.J. Campion, Can. J. Phys. 35, 1347 (1957). doi: 10.1139/p57-147 ADSCrossRefGoogle Scholar
  42. 42.
    J. Meissner, H. Schatz, H. Herndl, M. Wiescher, H. Beer, F. Käppler, Phys. Rev. C 53, 977 (1996). doi: 10.1103/PhysRevC.53.977 ADSCrossRefGoogle Scholar
  43. 43.
    E.T. Jurney, J.W. Starner, J.E. Lynn, S. Raman, Phys. Rev. C 56, 118 (1997). doi: 10.1103/PhysRevC.56.118 ADSCrossRefGoogle Scholar
  44. 44.
    H.I. Zagor, F.A. Valente, Phys. Rev. 67, 133 (1945)ADSCrossRefGoogle Scholar
  45. 45.
    R. James, F.L. Pasquale, J.A. Kelber, J. Phys.: Condens. Matter 25, 355004 (2013). doi: 10.1088/0953-8984/25/35/355004 Google Scholar
  46. 46.
    M. P. Seah, Quantification of AES and XPS. in Practical Surface Analysis, 2nd Edition; vol. 1 Auger and X-ray Photoelectron Spectroscopy,ed. by D. Briggs, M. P. Seah (Wiley, New York, 1990) pp. 200–251Google Scholar
  47. 47.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, 2nd edn. (Physical Electronics, Eden Prairie, 1995)Google Scholar
  48. 48.
    X. Xixiang, Z. Fangqing, C. Guanghua, Chin. Sci. Bull. 16, 1338–1341 (1988)Google Scholar
  49. 49.
    H. Künzli, P. Gantenbein, R. Steiner, P. Oelhafen, Fresenius J. Anal. Chem. 346, 41–44 (1993). doi: 10.1007/BF00321379 CrossRefGoogle Scholar
  50. 50.
    S. Balaz, A.N. Caruso, N.P. Platt, D.I. Dimov, N.M. Boag, J.I. Brand, Y.B. Losovyj, P.A. Dowben, J. Phys. Chem. B 111, 7009–7016 (2007). doi: 10.1021/jp0703760 CrossRefGoogle Scholar
  51. 51.
    E. Echeverria, F.L. Pasquale, J.A. Colón Santana, L. Zhang, R. James, A. Sokolov, J.A. Kelber, P.A. Dowben, Mater. Lett. 110, 20–23 (2013). doi: 10.1016/j.matlet.2013.08.009 CrossRefGoogle Scholar
  52. 52.
    L. Hammarstroem, O. Johansson, Coord. Chem. Rev. 254, 2546 (2010). doi: 10.1016/j.ccr.2010.01.006 CrossRefGoogle Scholar
  53. 53.
    J.A. Colón Santana, C.M. Young, J.W. McClory, J.C. Petrosky, X. Wang, P. Liu, J. Tang, V.T. Adamiv, Ya.V. Burak, K. Fukutani, P.A. Dowben, Radiat. Meas. 5152 (2013) 99–102. doi: 10.1016/j.radmeas.2013.02.021
  54. 54.
    S. Lee, J. Mazurowski, G. Ramseyer, P.A. Dowben, J. Appl. Phys. 72, 4925–4933 (1992)ADSCrossRefGoogle Scholar
  55. 55.
    A.A. Ahmad, N.J. Ianno, P.G. Snyder, D. Welipitiya, D. Byun, P.A. Dowben, J. Appl. Phys. 79, 8643–8647 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Elena Echeverría
    • 1
  • Robinson James
    • 2
  • Umesh Chiluwal
    • 2
  • Frank L. Pasquale
    • 2
    • 4
  • Juan A. Colón Santana
    • 3
  • Richard Gapfizi
    • 2
  • Jae-Do Tae
    • 2
  • M. Sky Driver
    • 2
  • A. Enders
    • 1
  • Jeffry A. Kelber
    • 2
  • P. A. Dowben
    • 1
  1. 1.Department of Physics and AstronomyUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of ChemistryUniversity of North TexasDentonUSA
  3. 3.Center for Energy Sciences ResearchLincolnUSA
  4. 4.PECVD Business UnitLam Research CorporationTualatinUSA

Personalised recommendations