Applied Physics A

, Volume 117, Issue 4, pp 1705–1713 | Cite as

Nanoscale electron beam-induced deposition and purification of ruthenium for extreme ultraviolet lithography mask repair

  • J. H. Noh
  • M. G. Stanford
  • B. B. Lewis
  • J. D. Fowlkes
  • H. Plank
  • P. D. RackEmail author


One critical area for the adoption of extreme ultraviolet (EUV) lithography is the development of appropriate mask repair strategies. To this end, we have explored focused electron beam-induced deposition of the ruthenium capping or protective layer. Electron beam-induced deposition (EBID) was used to deposit a ruthenium capping/protective film using the liquid bis(ethylcyclopentyldienyl)ruthenium(II) precursor. The carbon to ruthenium atomic ratio in the as-deposited material was estimated to be ~9/1. Subsequent to deposition, we demonstrate an electron stimulated purification process to remove carbon by-products from the deposit. Results indicate that high-fidelity nanoscale ruthenium repairs can be realized.


Ruthenium Ruthenium Oxidation Average Electron Energy Purification Time Methylcyclopentadienyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. HP acknowledges the support from Prof. Ferdinand Hofer and the Austrian Cooperative Research (ACR) and the Graz University of Technology in Austria. BBL acknowledges support via the University of Tennessee Chancellor’s Fellowship program. MGS acknowledges support from the National Defense Science and Engineering Graduate Fellowship funded through the AFOSR. PDR and JHN acknowledge support from Intel Corporation (and Ted Liang as program mentor) via the direct funding program at the Semiconductor Research Corporation (SRC-2012-In-2310). PDR and JDF acknowledge Cheryl Hartfield at Omniprobe, Inc. (an Oxford Instruments Company) for assistance with the OmniGIS gas injection system.

Supplementary material

339_2014_8745_MOESM1_ESM.docx (974 kb)
Supplementary material 1 (DOCX 973 kb)


  1. 1.
    I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol., B 26(4), 1197 (2008)CrossRefGoogle Scholar
  2. 2.
    S.J. Randolph, J.D. Fowlkes, P.D. Rack, CRC Crit. Rev. Solid State 31(3), 55 (2006)CrossRefGoogle Scholar
  3. 3.
    M.G. Lassiter, T. Liang, P.D. Rack, J. Vac. Sci. Technol. B 26(3), 963 (2008)CrossRefGoogle Scholar
  4. 4.
    T. Liang, E. Frendberg, B. Lieberman, A. Stivers, J. Vac. Sci. Technol., B 23(6), 3101 (2005)CrossRefGoogle Scholar
  5. 5.
    M. Waiblinger, T. Bret, R. Jonckheere, D. Van den Heuvel, Ebeam Based Mask Repair as Door Opener for Defect Free EUV Masks. in Proceedings of the SPIE, vol 8522, Photomask Technology, 85221M (2012). doi: 10.1117/12.966387
  6. 6.
    F. Aramaki, T. Ogawa, O. Matsuda, T. Kozakai, Y. Sugiyama, H. Oba, A. Yasaka, T. Amano, H. Shigemura, O. Suga, Development of New FIB Technology for EUVL Mask Repair. in Proceedings of the SPIE 7969, Extreme Ultraviolet (EUV) Lithography II, 79691C (2011). doi: 10.1117/12.879609
  7. 7.
    C.M. Gonzalez, R. Timilsina, G. Li, G. Duscher, P.D. Rack, W. Slingenbergh, W.F. van Dorp, J.T.M. De Hosson, K.L. Klein, H.M. Wu, L.A. Stern, J. Vac. Sci. Technol. B 32(2), 021602 (2014)Google Scholar
  8. 8.
    A. Lyons, R. Teki, J. Hartley. Liftoff Lithography of Metals for Extreme Ultraviolet Lithography Mask Absorber Layer Patterning. in Proceedings of the SPIE 8322, Extreme Ultraviolet (EUV) Lithography III, 83221X (2012). doi: 10.1117/12.916628
  9. 9.
    H. J. Levinson, P. Mangat, T. Wallow, L. Sun, P. Ackmann, S. Meyers. Considerations for high-numerical aperture EUV lithography. in Proceedings of the SPIE 8679, Extreme Ultraviolet (EUV) Lithography IV, 867916 (2013). doi: 10.1117/12.2015829
  10. 10.
    J.M. Slaughter, D.W. Schulze, C.R. Hills, A. Mirone, R. Stalio, R.N. Watts, C. Tarrio, T.B. Lucatorto, M. Krumrey, P. Mueller, C.M. Falco, J. Appl. Phys. 76(4), 2144 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    R.S. Rosen, M.A. Viliardos, M.E. Kassner, D.G. Stearns, S.P. Vernon. Thermal Stability of Mo/Si Multilayers. in Proceedings of the SPIE 1547, Multilayer Optics for Advanced X-Ray Applications, 212 (1992). doi: 10.1117/12.51281
  12. 12.
    S.P. Vernon, D.G. Stearns, R.S. Rosen, Opt. Lett. 18(9), 672 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    J.T.W. Barbee, S. Mrowka, M.C. Hettrick, Appl. Opt. 24(6), 883 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    R.S. Rosen, D.G. Stearns, M.A. Viliardos, M.E. Kassner, S.P. Vernon, Y. Cheng, Appl. Opt. 32(34), 6975 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    A. Botman, J.J.L. Mulders, C.W. Hagen, Nanotechnology 20(37), 372001 (2009)CrossRefGoogle Scholar
  16. 16.
    N.A. Roberts, J.D. Fowlkes, G.A. Magel, P.D. Rack, Nanoscale 5(1), 408 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    N.A. Roberts, G.A. Magel, C.D. Hartfield, T.M. Moore, J.D. Fowlkes, P.D. Rack, J. Vac. Sci. Technol., A 30(4), 041404 (2012)CrossRefGoogle Scholar
  18. 18.
    V. Gopal, V.R. Radilovic, C. Daraio, S. Jin, P. Yang, E.A. Stach, Nano Lett. 4(11), 2059 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    A. Botman, J.J.L. Mulders, R. Weemaes, S. Mentink, Nanotechnology 17(15), 3779 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    R.M. Langford, T.X. Wang, D. Ozkaya, Microelectron. Eng. 84(5–8), 784 (2007)CrossRefGoogle Scholar
  21. 21.
    S. Mehendale, J.J.L. Mulders, P.H.F. Trompenaars, Nanotechnology 24(14), 145303 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    C. Elbadawi, M. Toth, C.J. Lobo, ACS Appl. Mater. Interfaces 5(19), 9372 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Cordoba, J. Sese, J.M. De Teresa, M.R. Ibarra, Microelectron. Eng. 87(5–8), 1550 (2010)CrossRefGoogle Scholar
  24. 24.
    J.J.L. Mulders, L.M. Belova, A. Riazanova, Nanotechnology 22(05), 055302 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    A. Botman, M. Hesselberth, J.J.L. Mulders, Microelectron. Eng. 85(5–6), 1139 (2008)CrossRefGoogle Scholar
  26. 26.
    H. Plank, C. Gspan, M. Dienstleder, G. Kothleitner, F. Hofer, Nanotechnology 19(48), 485302 (2008)CrossRefGoogle Scholar
  27. 27.
    R.M. Langford, D. Ozkaya, J. Sheridan, R. Chater, Microsc. Microanal. 10, 1122 (2004)CrossRefGoogle Scholar
  28. 28.
    J. Bishop, M. Toth, M. Phillips, C. Lobo, Appl. Phys. Lett. 101(21), 211605 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    S. Wang, Y.-M. Sun, Q. Wang, J.M. White, J. Vac. Sci. Technol., B 22(4), 1803 (2004)CrossRefGoogle Scholar
  30. 30.
    M.H. Ervin, D. Chang, B. Nichols, A. Wickenden, J. Barry, J. Melngailis, J. Vac. Sci. Technol., B 25(6), 2250 (2007)CrossRefGoogle Scholar
  31. 31.
    M. Takeguchi, M. Shimojo, K. Furuya, Appl. Phys. A 93(2), 439 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    F. Porrati, R. Sachser, C.H. Schwalb, A.S. Frangakis, M. Huth, J. Appl. Phys. 109(6), 063715 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    C.H. Schwalb, C. Grimm, M. Baranowski, R. Sachser, F. Porrati, H. Reith, P. Das, J. Muller, F. Volklein, A. Kaya, M. Huth, Sensors 10, 9847 (2010)CrossRefGoogle Scholar
  34. 34.
    S. Frabboni, G.C. Gazzadi, L. Felisari, A. Spessot, Appl. Phys. Lett. 88(21), 213116 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    V. Scheuer, H. Koops, T. Tschudi, Microelectron. Eng. 5(1–4), 423 (1986)CrossRefGoogle Scholar
  36. 36.
    P.D. Rack, J.D. Fowlkes, S.J. Randolph, Nanotechnology 18(46), 465602 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    T. Bret, I. Utke, P. Hoffmann, M. Abourida, P. Doppelt, Microelectron. Eng. 83(4–9), 1482 (2006)CrossRefGoogle Scholar
  38. 38.
    H. Plank, J.H. Noh, J.D. Fowlkes, K. Lester, B.B. Lewis, P.D. Rack, ACS Appl. Mater. Interfaces 6(2), 1018 (2013)CrossRefGoogle Scholar
  39. 39.
    J.D. Wnuk, J.M. Gorham, S.G. Rosenberg, Dorp van WF, T.E. Madey, C.W. Hagen, D.H. Fairbrother, J. Phys. Chem. C 113(6), 2487 (2009)CrossRefGoogle Scholar
  40. 40.
    H. Plank, G. Kothleitner, F. Hofer, S.G. Michelitsch, C. Gspan, A. Hohenau, J. Krenn, J. Vac. Sci. Technol., B 29(05), 051801 (2011)CrossRefGoogle Scholar
  41. 41.
    H. Plank, D.A. Smith, T. Haber, P.D. Rack, F. Hofer, ACS Nano 6(1), 286 (2012)CrossRefGoogle Scholar
  42. 42.
    F. Porrati, R. Sachser, C.H. Schwalb, A.S. Frangakis, M. Huth, J. Appl. Phys. 109(06), 063715 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    C. Hopf, M. Schlüter, T. Schwarz-Selinger, U. van Toussaint, W. Jacob, New J. Phys. 10(9), 093022 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    B. Geier, C. Gspan, R. Winkler, R. Schmied, J.D. Fowlkes, H. Fitzek, S. Rauch, J. Rattenberger, P.D. Rack, H. Plank, J. Phys. Chem. C 118(25), 14009 (2014)CrossRefGoogle Scholar
  45. 45.
    B.L. Henke, E.M. Gullikson, J.C. Davis, At. Data Nucl. Data Tables 54(2), 181 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. H. Noh
    • 1
  • M. G. Stanford
    • 1
  • B. B. Lewis
    • 1
  • J. D. Fowlkes
    • 2
  • H. Plank
    • 3
    • 4
  • P. D. Rack
    • 1
    • 2
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Institute for Electron Microscopy and NanoanalysisGraz University of TechnologyGrazAustria
  4. 4.Center for Electron MicroscopyGrazAustria

Personalised recommendations