Advertisement

Applied Physics A

, Volume 117, Issue 2, pp 557–565 | Cite as

Automated synthesis of transmission lines loaded with complementary split ring resonators (CSRRs) and open complementary split ring resonators (OCSRRs) through aggressive space mapping (ASM)

  • Jordi Selga
  • Ana Rodríguez
  • Marco Orellana
  • Vicente Boria
  • Ferran Martín
Article

Abstract

This paper is focused on the application of space mapping optimization to the automated synthesis of transmission lines loaded with complementary split ring resonators (CSRRs) and open complementary split ring resonators (OCSRRs). These structures are of interest for the implementation of resonant-type metamaterial transmission lines and for the design of planar microwave circuits based on such complementary resonators. The paper presents a method to generate the layouts of CSRR- and OCSRR-loaded microstrip lines from the elements of their equivalent circuit models. Using the so-called aggressive space mapping, a specific implementation that uses quasi-Newton type iteration, we have developed synthesis algorithms that are able to provide the topology of these CSRR- and OCSRR-loaded lines in few steps. The most relevant aspect, however, is that this synthesis process is completely automatic, i.e., it does not require any action from the designers, other than initiating the algorithm. Moreover, this technique can be translated to other electrically small planar elements described by lumped element equivalent circuit models.

Keywords

Geometrical Variable Microstrip Line External Radius Electromagnetic Simulation Transmission Zero 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been partially supported by MICIIN-Spain (Projects TEC2010-17512 METATRANSFER, TEC2010-21520-C04-01 AVANSAT, CONSOLIDER EMET CSD2008-00066, and Grant AP2008-04707), Generalitat de Catalunya (Project 2009SGR-421), and MITyC-Spain (Project TSI-020100-2010-169 METASINTESIS). Ferran Martín is in debt to ICREA for supporting his work through an ICREA Academia Award (calls 2008 and 2013).

References

  1. 1.
    G.V. Eleftheriades, K.G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications (Wiley, New Jersey, 2005)CrossRefGoogle Scholar
  2. 2.
    C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New Jersey, 2006)Google Scholar
  3. 3.
    R. Marqués, F. Martín, M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Wiley, New Jersey, 2008)Google Scholar
  4. 4.
    F. Martín, Artificial Transmission Lines for RF and Microwave Applications. (Wiley, New Jersey) (to be published) Google Scholar
  5. 5.
    M.A. Antoniades, G.V. Eleftheriades, A broadband series power divider using zero-degree metamaterial phase shifting lines. IEEE Microw. Wirel. Compon. Lett. 15, 808–810 (2005)CrossRefGoogle Scholar
  6. 6.
    H. Okabe, C. Caloz, T. Itoh, A compact enhanced bandwidth hybrid ring using an artificial lumped element left handed transmission line section. IEEE Trans. Microw. Theory Tech. 52, 798–804 (2004)CrossRefADSGoogle Scholar
  7. 7.
    G. Sisó, J. Bonache, M. Gil, F. Martín, Application of resonant-type metamaterial transmission lines to the design of enhanced bandwidth components with compact dimensions. Microw. Opt. Technol. Lett. 50, 127–134 (2008)CrossRefGoogle Scholar
  8. 8.
    I.H. Lin, M. De Vincentis, C. Caloz, T. Itoh, Arbitrary dual-band components using composite right/left handed transmission lines. IEEE Trans. Microw. Theory Tech. 52, 1142–1149 (2004)CrossRefADSGoogle Scholar
  9. 9.
    A.C. Papanastasiou, G.E. Georghiou, G.V. Eleftheriades, A quad-band Wilkinson power divider using generalized NRI transmission lines. IEEE Microw. Wirel. Compon. Lett. 18, 521–523 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Durán-Sindreu, G. Sisó, J. Bonache, F. Martín, Planar multi-band microwave components based on the generalized composite right/left handed transmission line concept. IEEE Trans. Microw. Theory Tech. 58(12), 3882–3891 (2010)ADSGoogle Scholar
  11. 11.
    J. Bonache, I. Gil, J. García-García, F. Martín, Novel microstrip band pass filters based on complementary split ring resonators. IEEE Trans. Microw. Theory Tech. 54, 265–271 (2006)CrossRefADSGoogle Scholar
  12. 12.
    M. Gil, J. Bonache, J. García-García, J. Martel, F. Martín, Composite right/left handed (CRLH) metamaterial transmission lines based on complementary split rings resonators (CSRRs) and their applications to very wide band and compact filter design. IEEE Trans. Microw. Theory Tech. 55, 1296–1304 (2007)CrossRefADSGoogle Scholar
  13. 13.
    S. Lim, C. Caloz, T. Itoh, Metamaterial-based electronically-controlled transmission line structure as a novel leaky-wave antenna with tunable angle and beamwidth. IEEE Trans. Microw. Theory Tech. 52(12), 2678–2690 (2004)CrossRefADSGoogle Scholar
  14. 14.
    G. Zamora, S. Zuffanelli, F. Paredes, F. Javier Herraiz-Martínez, F. Martín, J. Bonache, Fundamental mode leaky-wave-antenna (LWA) using slot line and split-ring-resonator (SRR) based metamaterials. IEEE Antennas Wirel. Propag. Lett. 12, 1424–1427 (2013)CrossRefADSGoogle Scholar
  15. 15.
    A.K. Iyer, G.V. Eleftheriades, Negative refractive index metamaterials supporting 2-D waves. in IEEE-MTT Int’l Microwave Symposium, vol 2, Seattle, WA, pp. 412–415 (2002)Google Scholar
  16. 16.
    A.A. Oliner, A periodic-structure negative-refractive-index medium without resonant elements. In URSI Digest, IEEE-AP-S USNC/URSI National Radio Science Meeting, San Antonio, TX, pp. 41 (2002)Google Scholar
  17. 17.
    C. Caloz, T. Itoh, Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line. in Proceedings of IEEE-AP-S USNC/URSI National Radio Science Meeting, vol 2, San Antonio, TX, pp. 412–415 (2002)Google Scholar
  18. 18.
    F. Martín, F. Falcone, J. Bonache, R. Marqués, M. Sorolla, Split ring resonator based left handed coplanar waveguide. Appl. Phys. Lett. 83, 4652–4654 (2003)CrossRefADSGoogle Scholar
  19. 19.
    F. Falcone, T. Lopetegi, M.A.G. Laso, J.D. Baena, J. Bonache, R. Marqués, F. Martín, M. Sorolla (2004) Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93, paper 197401Google Scholar
  20. 20.
    M. Durán-Sindreu, A. Vélez, F. Aznar, G. Sisó, J. Bonache, F. Martín, Application of open split ring resonators and open complementary split ring resonators to the synthesis of artificial transmission lines and microwave passive components. IEEE Trans. Microw. Theory Tech. 57, 3395–3403 (2009)CrossRefADSGoogle Scholar
  21. 21.
    A. Vélez, F. Aznar, M. Durán-Sindreu, J. Bonache, F. Martín, Stop-band and band-pass filters in coplanar waveguide technology implemented by means of electrically small metamaterial-inspired open resonators. IET Microw. Antennas Propag. 4, 712–716 (2004)CrossRefGoogle Scholar
  22. 22.
    J.D. Baena, J. Bonache, F. Martín, R. Marqués, F. Falcone, T. Lopetegi, M.A.G. Laso, J. García, I. Gil, M. Flores-Portillo, M. Sorolla, Equivalent circuit models for split ring resonators and complementary split rings resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53, 1451–1461 (2005)CrossRefADSGoogle Scholar
  23. 23.
    M. Gil, J. Bonache, J. Selga, J. García-García, F. Martín, Broadband resonant type metamaterial transmission lines. IEEE Microw. Wirel. Compon. Lett. 17, 97–99 (2007)CrossRefGoogle Scholar
  24. 24.
    M. Durán-Sindreu, P. Vélez, J. Bonache, F. Martín, Broadband microwave filters based on open split ring resonators (OSRRs) and open complementary split ring resonators (OCSRRs): improved models and design optimization. Radioengineering 20, 775–783 (2011)Google Scholar
  25. 25.
    P. Vélez, J. Naqui, M. Durán-Sindreu, J. Bonache, F. Martín, Broadband microstrip bandpass filter based on open complementary split ring resonators. Int. J. Antennas Propag. 2012, 6 (2012)CrossRefGoogle Scholar
  26. 26.
    J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny, R.H. Hemmers, Space mapping technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech. 42, 2536–2544 (1994)CrossRefADSGoogle Scholar
  27. 27.
    J.W. Bandler, R.M. Biernacki, S.H. Chen, R.H. Hemmers, K. Madsen, Electromagnetic optimization exploiting aggressive space mapping. IEEE Trans. Microw. Theory Tech. 43, 2874–2882 (1995)CrossRefADSGoogle Scholar
  28. 28.
    J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, J. Søndergaard, Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52, 337–361 (2004)CrossRefADSGoogle Scholar
  29. 29.
    C.G. Broyden, A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19(92), 577–593 (1965)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    J. Selga, A. Rodríguez, V.E. Boria, F. Martín, Synthesis of split rings based artificial transmission lines through a new two-step, fast converging, and robust aggressive space mapping (ASM) algorithm. IEEE Trans. Microw. Theory Tech. 61(6), 2295–2308 (2013)CrossRefADSGoogle Scholar
  31. 31.
    A. Velez, F. Aznar, J. Bonache, M.C. Velázquez-Ahumada, J. Martel, F. Martín, Open complementary split ring resonators (OCSRRs) and their application to wideband CPW band pass filters. IEEE Microw. Wirel. Compon. Lett. 19, 197–199 (2009)CrossRefGoogle Scholar
  32. 32.
    D.M. Bates, D.G. Watts, Nonlinear Regression Analysis and Its Applications (Wiley, New York, 1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jordi Selga
    • 1
  • Ana Rodríguez
    • 2
  • Marco Orellana
    • 1
  • Vicente Boria
    • 2
  • Ferran Martín
    • 1
  1. 1.GEMMA/CIMITEC, Departament d’Enginyeria ElectrònicaUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Departamento de Comunicaciones-iTEAMUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations