Applied Physics A

, Volume 117, Issue 2, pp 471–475 | Cite as

Quasi-total omnidirectional light absorption in nanostructured gold films

  • Hanbin Zheng
  • Renaud Vallée
  • Rui M. Almeida
  • Thomas Rivera
  • Serge Ravaine
Article

Abstract

A series of experiments and simulations have been performed to evidence the omnidirectional light absorption of planar gold structures containing a two-dimensional lattice of spherical beads or pores. We show that more than 90 % of incident light is absorbed at angles of incidence up to 65° for optimum values of the gold film thickness. We also report the tunability of the absorption wavelength by varying the size of the beads/pores.

References

  1. 1.
    T.V. Teperik, V.V. Popov, F.J. García de Abajo, Void plasmons and total absorption of light in nanoporous metallic films. Phys. Rev. B 71, 1–9 (2005)CrossRefGoogle Scholar
  2. 2.
    T.V. Teperik, V.V. Popov, F.J. García de Abajo, M. Abdelsalam, P.N. Bartlett, T.A. Kelf, Y. Sugawara, J.J. Baumberg, Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. Opt. Express 14, 1965–1972 (2006)CrossRefADSGoogle Scholar
  3. 3.
    T.V. Teperik, F.J. García de Abajo, A.G. Borisov, M. Abdelsalam, P.N. Bartlett, Y. Sugawara, J.J. Baumberg, Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics 2, 299–301 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, E. Duguet, High-yield preparation of polystyrene/silica clusters of controlled morphology. Polym. Chem. 3, 1130–1132 (2012)CrossRefGoogle Scholar
  5. 5.
    N. Vogel, S. Goerres, K. Landfester, C.K. Weiss, A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air–water interface and subsequent plasma-induced size reduction. Macromol. Chem. Phys. 212, 1719–1734 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Taflove, A. Oskooi, S.G. Johnson, Advances in FDTD Computational Electrodynamics—Photonics and Nanotechnology (Artech House, Boston, 2013)Google Scholar
  7. 7.
    A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998)CrossRefADSGoogle Scholar
  8. 8.
    R. Szamocki, A. Velichko, C. Holzapfel, F. Mulcklich, S. Ravaine, P. Garrigue, N. Sojic, R. Hempelmann, A. Kuhn, Macroporous ultramicroelectrodes for improved electroanalytical measurements. Anal. Chem. 79, 533–539 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Heim, S. Reculusa, S. Ravaine, A. Kuhn, Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures. Adv. Funct. Mater. 22, 538–545 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, A. Kuhn, Design of catalytically active cylindrical and macroporous gold microelectrodes. Adv. Funct. Mater. 21, 691–698 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hanbin Zheng
    • 1
    • 2
  • Renaud Vallée
    • 1
  • Rui M. Almeida
    • 2
  • Thomas Rivera
    • 3
  • Serge Ravaine
    • 1
  1. 1.CNRS, CRPP, UPR 8641Univ. BordeauxPessacFrance
  2. 2.Depart. Eng. Química/ICEMSInstituto Superior Técnico/ULLisbonPortugal
  3. 3.Orange Labs NetworkIssy MoulineauxFrance

Personalised recommendations