Applied Physics A

, Volume 117, Issue 3, pp 997–1002 | Cite as

Transverse conductivity in Pr\(_y\)Y\(_{1-y}\)Ba\(_2\)Cu\(_3\)O\(_{7-\delta }\) single crystals in a wide range of praseodymium concentrations

  • Ruslan V. Vovk
  • Georgij Ya. Khadzhai
  • Oleksandr V. Dobrovolskiy
Invited paper

Abstract

The electrical resistance across the layers of high-quality Pr\(_y\)Y\(_{1-y}\)Ba\(_2\)Cu\(_3\)O\(_{7-\delta }\) single crystals is measured in the temperature interval \(T_{{\rm c}} - 300\) K and the praseodymium concentration range \(0 \le y \le 0.5\). The experimental data are approximated by a relation accounting for the fluctuation conductivity in the 3D Aslamazov–Larkin model, a metal-like contribution limited by scattering on impurities and phonons for \(0 \le y \le 0.23\), as well as a semiconductor-like contribution for \(0.23 \le y \le 0.5\), where the carriers mobility is determined by scattering on ionized impurities. Our analysis of the concentration dependences of the fitting parameters shows that at \(0.23 \le y \le 0.5\) the samples are heterogeneous and the conductivity is realized by variable-range hopping between regions with different praseodymium concentrations. The in-plane coherence length \(\xi _{xy}(0)\) amounts to 100 Å.

References

  1. 1.
    D.M. Ginsberg (ed.), Physical Properties of High Temperature Superconductors I (Word Scientific, Singapore, 1989)Google Scholar
  2. 2.
    R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, A. Chroneos, E.V. Biletskiy, J. Alloy Compd. 485(12), L21 (2009). doi:10.1016/j.jallcom.2009.05.132. http://www.sciencedirect.com/science/article/pii/S0925838809011074
  3. 3.
    R. Vovk, M. Obolenskii, A. Zavgorodniy, I. Goulatis, A. Chroneos, V. Pinto Simoes, J. Mater. Sci. Mater. Electron. 20(9), 858 (2009). doi:10.1007/s10854-008-9806-y
  4. 4.
    M. Akhavan, Physica B 321(1–4), 265 (2002). doi:10.1016/S0921-4526(02)00860-8. http://www.sciencedirect.com/science/article/pii/S0921452602008608. Proceedings of the second regional conference on magnetic and superconducting materials
  5. 5.
    R. Vovk, M. Obolenskii, A. Zavgorodniy, A. Bondarenko, I. Goulatis, A. Chroneos, J. Mater. Sci. Mater. Electr. 18(8), 811 (2007). doi:10.1007/s10854-006-9086-3 CrossRefGoogle Scholar
  6. 6.
    A. Chroneos, I.L. Goulatis, R.V. Vovk, Acta Chim. Sloven. 54, 179 (2007)Google Scholar
  7. 7.
    J. Fink, N. Nücker, H. Romberg, M. Alexander, M.B. Maple, J.J. Neumeier, J.W. Allen, Phys. Rev. B 42, 4823 (1990). doi:10.1103/PhysRevB.42.4823 CrossRefADSGoogle Scholar
  8. 8.
    M.R. Scheinfein, J. Unguris, D.T. Pierce, R.J. Celotta, J. Appl. Phys. 67(9), 5932 (1990). doi:10.1063/1.346018
  9. 9.
    C. Infante, M.K.E. Mously, R. Dayal, M. Husain, S. Siddiqi, P. Ganguly, Physica C 167(56), 640 (1990). doi:10.1016/0921-4534(90)90683-6. http://www.sciencedirect.com/science/article/pii/0921453490906836
  10. 10.
    A.I. Liechtenstein, I.I. Mazin, Phys. Rev. Lett. 74, 1000 (1995). doi:10.1103/PhysRevLett.74.1000 CrossRefADSGoogle Scholar
  11. 11.
    R. Vovk, N. Vovk, G. Khadzhai, I. Goulatis, A. Chroneos, Sol. State Commun. 190, 18 (2014). doi:10.1016/j.ssc.2014.04.004. http://www.sciencedirect.com/science/article/pii/S0038109814001549
  12. 12.
    G.Y. Khadzhai, N.R. Vovk, R.V. Vovk, Fiz. Nizk. Temp. 40(6), 630 (2014)Google Scholar
  13. 13.
    R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, I.L. Goulatis, Mater. Res. Expr. 1(2), 026303 (2014). http://stacks.iop.org/2053-1591/1/i=2/a=026303
  14. 14.
    R.V. Vovk, N.R. Vovk, O.V. Shekhovtsov, I.L. Goulatis, A. Chroneos, Supercond. Sci. Technol. 26(8), 085017 (2013). http://stacks.iop.org/0953-2048/26/i=8/a=085017
  15. 15.
    R.V. Vovk, M.A. Obolenskii, Z.F. Nazyrov, I.L. Goulatis, A. Chroneos, V.M. Pinto Simoes, J. Mater. Sci. Mater. Electron. 23(6), 1255 (2012). doi:10.1007/s10854-011-0582-8.
  16. 16.
    M.A. Obolenskii, A.V. Bondarenko, M.O. Zubareva, Fiz. Nizk. Temp. 15, 1152 (1989)Google Scholar
  17. 17.
    H.C. Montgomery, J. Appl. Phys. 42(7), 2971 (1971). doi:10.1063/1.1660656. http://scitation.aip.org/content/aip/journal/jap/42/7/10.1063/1.1660656
  18. 18.
    A.A. Abrikosov, L.P. Gorkov, J. Exp. Theor. Phys. 39, 1781 (1960)Google Scholar
  19. 19.
    M.V. Sadovskii, A.I. Posazhennikova, J. Exp. Theor. Phys. Lett. 65, 258 (1997)CrossRefGoogle Scholar
  20. 20.
    A. Kebede, C.S. Jee, J. Schwegler, J.E. Crow, T. Mihalisin, G.H. Myer, R.E. Salomon, P. Schlottmann, M.V. Kuric, S.H. Bloom, R.P. Guertin, Phys. Rev. B 40, 4453 (1989). doi:10.1103/PhysRevB.40.4453 CrossRefADSGoogle Scholar
  21. 21.
    L.J. Colquitt, Appl. Phys. 36, 2454 (1965)CrossRefGoogle Scholar
  22. 22.
    T. Aisaka, M. Shimizu, J. Phys. Soc. Jap. 28(3), 646 (1970). doi:10.1143/JPSJ.28.646 CrossRefADSGoogle Scholar
  23. 23.
    E.A. Zhurakovskiy, V.F. Nemchenko, Cinetic Properties and Electronic Properties of Interstitials (Naukova dumka, Kiev, 1989)Google Scholar
  24. 24.
    V.A. Voloshin, Solid State Phys. 38, 1553 (1996)Google Scholar
  25. 25.
    R.V. Vovk, Z.F. Nazyrov, I.L. Goulatis, A. Chroneos, Modern Phys. Lett. B 26(25), 1250163 (2012). doi:10.1142/S0217984912501631 CrossRefADSGoogle Scholar
  26. 26.
    R. Smith, Semiconductors (Mir, Moscow, 1982)Google Scholar
  27. 27.
    P.S. Kireev, Physics of Semiconductors (Vyshaja Shkola, Moscow, 1975)Google Scholar
  28. 28.
    A. Larkin, A. Varlamov, Theory of Fluctuations in Superconductors (Oxford University Press, Oxford, 2009)Google Scholar
  29. 29.
    B. Leridon, A. Défossez, J. Dumont, J. Lesueur, J.P. Contour, Phys. Rev. Lett. 87, 197007 (2001). doi:10.1103/PhysRevLett.87.197007 CrossRefADSGoogle Scholar
  30. 30.
    M.Z. Meilihov, JETP Lett. 88, 819 (1999)CrossRefGoogle Scholar
  31. 31.
    A.D. Ivliev, Y.V. Glagoleva, Solid State Phys. 52, 1 (2011)Google Scholar
  32. 32.
    N.E. Alexeevskii, A.V. Gusev, G.G. Devyatyh, A.V. Kabanov, A.V. Mitin, V.I. Nizhankovskii, E.P. Hlybov, J. Exp. Theor. Phys. Lett. 47, 139 (1988)Google Scholar
  33. 33.
    S.V. Vonsovkiy, Y.A. Izyumov, E.Z. Kurmaev, Superconductivity of Trancient Metalls, Their Allows and Compounds (Nauka, Moscow, 1997)Google Scholar
  34. 34.
    M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Flower, Physica C 176, 95 (1991). doi:10.1016/0921-4534(91)90700-9. http://www.sciencedirect.com/science/article/pii/0921453491907009
  35. 35.
    G. Collin, P.A. Albouy, P. Monod, M. Ribault, J. Phys. France 51, 1163 (1990)CrossRefGoogle Scholar
  36. 36.
    D.H.S. Smith, R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. B 72, 054506 (2005). doi:10.1103/PhysRevB.72.054506 CrossRefADSGoogle Scholar
  37. 37.
    D.H.S. Smith, R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, New J. Phys. 8(8), 128 (2006). http://stacks.iop.org/1367-2630/8/i=8/a=128
  38. 38.
    I.N. Adamenko, K.E. Nemchenko, V.I. Tsyganok, A.I. Chervanev, Low Temp. Phys. 20(7), 498 (1994). doi:10.1063/1.592763. http://link.aip.org/link/?LTP/20/498/1
  39. 39.
    V.N. Golovach, M.E. Portnoi, Phys. Rev. B 74, 085321 (2006). doi:10.1103/PhysRevB.74.085321 CrossRefADSGoogle Scholar
  40. 40.
    V.M. Apalkov, M.E. Portnoi, Phys. Rev. B 65, 125310 (2002). doi:10.1103/PhysRevB.65.125310 CrossRefADSGoogle Scholar
  41. 41.
    P.J. Curran, V.V. Khotkevych, S.J. Bending, A.S. Gibbs, S.L. Lee, A.P. Mackenzie, Phys. Rev. B 84, 104507 (2011). doi:10.1103/PhysRevB.84.104507 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ruslan V. Vovk
    • 1
  • Georgij Ya. Khadzhai
    • 1
  • Oleksandr V. Dobrovolskiy
    • 1
    • 2
  1. 1.Physics DepartmentV. Karazin National UniversityKharkivUkraine
  2. 2.Physikalisches Institut Goethe UniversityFrankfurt am MainGermany

Personalised recommendations