Applied Physics A

, Volume 117, Issue 4, pp 2225–2234 | Cite as

Prediction of drop-on-demand (DOD) pattern size in pulse voltage-applied electrohydrodynamic (EHD) jet printing of Ag colloid ink

  • Jaehong Park
  • Beomsoo Kim
  • Sang-Yoon Kim
  • Jungho HwangEmail author


Drop-on-demand printing is receiving a great deal of interest in industrial applications; however, the desired pattern sizes are realized by trial and error, through repeated printing experiments with varied materials (ink and suspended particles), operating conditions (voltage, flow rate, nozzle-to-plate distance, etc.), and substrate wettability. Since this approach requires a great deal of time, cost, and effort, a more convenient and efficient method that will predict pattern sizes with a minimal number of experiments is needed. In this study, we patterned a series of Ag dots and lines using a pulsed voltage-applied electrohydrodynamic jet printing system and measured their sizes with an optical microscope. We then applied a model suggested by Stringer and Derby (J Eur Ceram Soc 29:913–918, 2009) and Gao and Sonin (Proc R Soc Lond Ser A 444:533–554, 1994) to predict the pattern sizes, comparing these predictions with the measured sizes. Finally, we demonstrated our methodology on disconnected line repairing.


Contact Angle Duty Ratio Pattern Size Taylor Cone Droplet Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by BioNano Health-Guard Research Center funded by the ministry of Science, ICT and Future Planning (MSIP) of Korea as Global Frontier Project (Grant Number H-GUARD_2013M3A6B2078959).


  1. 1.
    Y. Wang, J. Bokor, A. Lee, Maskless lithography using drop-on-demand inkjet printing method. Proc. SPIE 5374, 628–635 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    W. Fisher, M. Zhang, A biochip microarray fabrication system using inkjet technology. IEEE Trans. Autom. Sci. Eng. 4, 488–500 (2007)CrossRefGoogle Scholar
  3. 3.
    D.Y. Shin, Fabrication of an inkjet-printed seed pattern with silver nanoparticlulate ink on a textured silicon solar cell wafer. J. Micromech. Microeng. 20, 125003 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    H.P. Le, Progress and trends in ink-jet printing technology. J. Imaging Sci. Technol. 42, 49–62 (1998)Google Scholar
  5. 5.
    H.F. Poon, Electrohydrodynamic Printing. Ph.D. Thesis, Department of Chemical Engineering, Princeton University (2002)Google Scholar
  6. 6.
    O.A. Basaran, H. Gao, P.P. Bhat, Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85–113 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    M. Cloupeau, B. Prunet-Foch, Electrostatic spraying of liquids: main functioning modes. J. Electrost. 25, 165–184 (1990)CrossRefGoogle Scholar
  8. 8.
    M. Cloupeau, B. Prunet-Foch, Electrostatic spraying of liquids in cone-jet mode. J. Electrost. 22, 135–159 (1989)CrossRefGoogle Scholar
  9. 9.
    J.H. Yu, S.Y. Kim, J. Hwang, Effect of viscosity of silver nanoparticle suspension on conductive line patterned by electrohydrodynamic jet printing. Appl. Phys. A 89, 157–159 (2007)CrossRefGoogle Scholar
  10. 10.
    H.K. Choi, J.U. Park, O.O. Park, P.M. Ferreira, J.G. Georgiadis, J.A. Rogers, Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl. Phys. Lett. 92, 123109 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira, J.A. Rogers, High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782–789 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    S. Mishra, K.L. Barton, A.G. Alleyne, P.M. Ferreira, J.A. Rogers, High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet. J. Micromech. Microeng. 20, 095026 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    S. Lee, D. Byun, D. Jung, J. Choi, Y. Kim, J.H. Yang, S.U. Son, S.B.Q. Tran, H.S. Ko, Pole-type ground electrode in nozzle for electrostatic field induced drop-on-demand inkjet head. Sens. Actuators, A 141, 506–514 (2008)CrossRefGoogle Scholar
  14. 14.
    D.K. Kang, M.W. Lee, H.Y. Kim, S.C. James, S.S. Yoon, Electrohydrodynamic pulsed-inkjet characteristics of various inks containing aluminum particles. J. Aerosol Sci. 42, 621–630 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Kim, H. Oh, S.S. Kim, Electrohydrodynamic drop-on-demand patterning in pulsed cone-jet mode at various frequencies. J. Aerosol Sci. 39, 819–825 (2008)CrossRefGoogle Scholar
  16. 16.
    K. Wang, M.D. Paine, J.P. Stark, Fully voltage controlled electrohydrodynamic jet printing of conductive silver tracks with a sub-100 μm line width. J. Appl. Phys. 106, 024907 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    D.H. Youn, S.H. Kim, Y.S. Yang, S.C. Lim, S.J. Kim, S.H. Ahn, H.S. Sim, S.M. Ryu, D.W. Shin, J.B. Yoo, Electrohydrodynamic micro patterning of silver ink using near-field electrohydrodynamic jet printing with tilted-outlet nozzle. Appl. Phys. A 96, 933–938 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    S. Son, S. Lee, K. An, J. Choi, Fine metal line patterning of ITO ink based on electrohydrodynamic printing, in 2012 12th International Conference on Control, Automation and Systems (ICCAS), 2012, October, IEEE, pp. 395–397Google Scholar
  19. 19.
    Y. Jang, I.H. Tambunan, H. Tak, V.D. Nguyen, T. Kang, D. Byun, Non-contact printing of high aspect ratio Ag electrodes for polycrystalline silicon solar cell with electrohydrodynamic jet printing. Appl. Phys. Lett. 102, 123901 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    C. Wei, H. Qin, N.A. Ramires-lglesias, C.P. Chiu, Y.S. Lee, J. Dong, J. Micromech. Microeng. 24, 045010 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    J. Stringer, B. Derby, Limits to feature size and resolution in ink jet printing. J. Eur. Ceram. Soc. 29, 913–918 (2009)CrossRefGoogle Scholar
  22. 22.
    F. Gao, A.A. Sonin, Precise doposition of molten microdrops : the physics of digital microfabrication. Proc. R. Soc. A 444, 533–554 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    R.J. Good, Contact angle wettability and Adhesion: acritical review. J. Adhes. Sci. Technol. 6, 1269–1302 (1992)CrossRefGoogle Scholar
  24. 24.
    S.H. Lee, Y.J. Cho, Characterization of silver inkjet overlap-printing through cohesion and adhesion. J. Electr. Eng. Technol. 7, 91–96 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jaehong Park
    • 1
  • Beomsoo Kim
    • 2
  • Sang-Yoon Kim
    • 1
  • Jungho Hwang
    • 1
    Email author
  1. 1.School of Mechanical EngineeringYonsei UniversitySeoulKorea
  2. 2.Production Engineering Research InstituteLG Electronics Inc.SeoulKorea

Personalised recommendations