Applied Physics A

, Volume 117, Issue 4, pp 1659–1674 | Cite as

Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

  • Andrei G. Fedorov
  • Songkil Kim
  • Mathias Henry
  • Dhaval Kulkarni
  • Vladimir V. Tsukruk


Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for “direct-write” processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple “beams” of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications’ prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials.


Contact Resistance Amorphous Carbon Metal Electrode Device Structure Contact Resistivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This material is based on work supported by the Semiconductor Research Corporation under GRC Contract Nos. 2008-OJ-1864 and 2011-OJ-2221 (FEBIP of CNT and graphene interconnects), the Air Force Office of Scientific Research BIONIC Center under Award No. FA9550-09-1-0162 (FEBIP for graphene surface modification), the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0010729 (energetic-gas-jet FEBIP) and the National Science Foundation under Award No. DMI-0403671 (FEBID-MaCE for hierarchical silicon nanostructures). CVD grown graphene samples used in this work were provided the Air Force Research Laboratory, Materials and Manufacturing Directorate (S. Kim, S. Pacley and A. Voevodin). Collaboration with K. Rykaczewski and O. Hildreth on FEBID-MaCE is appreciated. We also thank K. Rykaczewski for his early contributions and experimental assistance with FEBID of CNT interconnects. Insightful discussions and guidance by R. Caudillo (Intel) and A. Chen (Global Foundries) on electrical characterization of graphene-based electronic devices are appreciated.


  1. 1.
    A. Naeemi, R. Sarvari, J.D. Meindl, Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electr. Dev. Lett. 26(2), 84–86 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    W. Steinhögl, G. Schindler, G. Steinlesberger, M. Engelhardt, Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66, 075414 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    ITRS: International Technology Roadmap for Semiconductors (2011 ed).
  4. 4.
    R.S. Ruoff, D.C. Lorents, Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995)CrossRefGoogle Scholar
  5. 5.
    C. Lee, X. Wei, J. Kysar, J. Hone, Measurement of elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2001)CrossRefGoogle Scholar
  8. 8.
    A. Naeemi, J.D. Meindl, Compact physical models for multiwall carbon–nanotube interconnects. IEEE Electr. Dev. Lett. 27, 338–340 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    A.D. Franklin, Z. Chen, Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 5, 858–862 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    R.V. Seidel, A.P. Graha, J. Kretz, B. Rajasekharan, G.S. Duesberg, M. Liebau, E. Unger, F. Kreupl, W. Hoenlein, Sub-20 nm short channel carbon nanotube transistors. Nano Lett. 5(1), 147–150 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S. Frank, P. Poncharal, Z.L. Wang, W.A. de Herr, Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    H.J. Li, W.G. Lu, J.J. Li, X.D. Bai, C.Z. Gu, Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett. 95(8), 086601 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    R. Pati, Y. Zhang, S.K. Nayak, P.M. Ajayan, Effect of H2O adsorption on electron transport in carbon nanotube. Appl. Phys. Lett. 81(14), 2638–2640 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    J. Tersoff, Contact resistance of carbon nanotubes. Appl. Phys. Lett. 74(15), 2122–2124 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    J.J. Palacios, A.J. Perez-Jimenez, E. SanFabian, J.A. Verges, First-principles phase-coherent transport in metallic nanotubes with realistic contacts. Phys. Rev. Lett. 90(10), 106801 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    M.S. Wang, D. Golberg, Y. Bando, Superstrong low-resistant carbon nanotube-carbide-metal nanocontacts. Adv. Mater. 22(47), 5350–5355 (2010)CrossRefGoogle Scholar
  17. 17.
    A.D. Franklin, S.-J. Han, A.A. Bol, W. Haensch, Effects of nanoscale contacts to graphene. IEEE Electron. Dev. Lett. 32(8), 1035–1037 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    A.D. Franklin, S.-J. Han, A.A. Bol, V. Pereveinos, Double contacts for improved performance of graphene transistors. IEEE Electron Device Lett. 33(1), 17–19 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Matsuda, W.Q. Deng, W.A. Goddard, Contact resistance properties between nanotubes and various metals from quantum mechanics. J. Phys. Chem. C 111, 11113–11116 (2007)CrossRefGoogle Scholar
  20. 20.
    Y. Matsuda, W.Q. Deng, W.A. Goddard, Contact resistance for “end-contacted” metal-graphene and metal-nanotube interfaces from quantum mechanics. J. Phys. Chem. C 114, 17845–17850 (2010)CrossRefGoogle Scholar
  21. 21.
    J. Smith, A.D. Franklin, D.B. Farmer, C.D. Dimitrakopoulos, Reducing contact resistance in graphene devices through contact area patterning. ACS Nano 7(4), 3661–3667 (2013)CrossRefGoogle Scholar
  22. 22.
    S.J. Randolph, J.D. Fowlkes, P.D. Rack, Focused, nanoscale electron-beam-induced deposition and etching. Crit. Rev. Sol. State Mater. Sci. 31(3), 55–89 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    N. Silvis-Cividjian, C.W. Hagen, P. Kruit, Spatial resolution limits in electron-beam-induced-deposition. J. Appl. Phys. 98, 084905–084912 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    W.F. van Dorp, C.W. Hagen, P.A. Crozier, P. Kruit, Growth behavior near the ultimate resolution of nanometer scale focused electron beam-induced deposition. Nanotechnology 19(22), 225305 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    J.C. Meyer, C.O. Girit, M.F. Crommie, A. Zettl, Hydrocarbon lithography on graphene membranes. Appl. Phys. Lett. 92, 123110 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    K. Rykaczewski, M.R. Henry, S.K. Kim, A.G. Fedorov, D. Kulkarni, S. Singamaneni, V.V. Tsukruk, The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on electrical resistance of a multiwalled carbon nanotube-to-metal contact interface. Nanotechnology 21(3), 0352021–03520212 (2010)CrossRefGoogle Scholar
  27. 27.
    L. Mandeltort, P. Choudhury, J.K. Johnson, J.T. Yates, Methyl radical reactivity on the basal plane of graphite. J. Phys. Chem. C 116, 18347–18357 (2012)CrossRefGoogle Scholar
  28. 28.
    A.V. Krasheninnikov, K. Nordlund, P.O. Lehtinen, A.S. Foster, A. Ayuela, R.M. Nieminen, Adsorption and migration of carbon adatoms on carbon nanotubes: Density-functional ab initio and tight-binding studies. Phys. Rev. B. 69, 073402 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    K. Rykaczewski, W.B. White, A.G. Fedorov, Analysis of electron beam induced deposition (EBID) of residual hydrocarbons in electron microscopy. J. Appl. Phys. 101(5), 054307–054319 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    K. Rykaczewski, A. Marshall, W.B. White, A.G. Fedorov, Dynamic growth of carbon nanopillars and microrings in electron beam induced dissociation of residual hydrocarbons. Ultramicroscopy 108(9), 989–992 (2008)CrossRefGoogle Scholar
  31. 31.
    T.H.P. Chang, M. Mankos, K.Y. Lee, L.P. Muray, Multiple electron-beam lithography. Microelectron. Eng. 57–58, 117–135 (2001)CrossRefGoogle Scholar
  32. 32.
    M.R. Henry, S.K. Kim, K. Rykaczewski, A.G. Fedorov, Inert gas jets for growth control in electron beam induced deposition. Appl. Phys. Lett. 98(26), 263109 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    I. Utke, P. Hoffmann, J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B 26(4), 1197–1276 (2008)CrossRefGoogle Scholar
  34. 34.
    R. Winkler, J. Fowlkes, A. Szkudlarek, I. Utke, P.D. Rack, H. Plank, The nanoscale implications of a molecular gas beam during electron beam induced deposition. ACS Appl. Mat. Interfaces. doi: 10.1021/am405591d. (2014)
  35. 35.
    S.K. Kim, D.D. Kulkarni, K. Rykaczewski, M. Henry, V.V. Tsukruk, A.G. Fedorov, Fabrication of an ultra-low-resistance, ohmic contact to MWCNT-metal interconnect using graphitic carbon by electron beam induced deposition (EBID). IEEE Trans. Nanotechnol. 11(6), 1223–1230 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    S.K. Kim, D.D. Kulkarni, S. Jang, M. Henry, V.V. Tsukruk, A.G. Fedorov, Graphitic FEBID carbon interfaces between MWCNT/graphene and metal electrodes. Poster presentation, Materials Research Society Spring 2013 Meeting (San Francisco, CA, April 1–5, 2013)Google Scholar
  37. 37.
    D. Fox, A. O’Neill, D. Zhou, M. Boese, J.N. Coleman, H.Z. Zhang, Nitrogen assisted etching of graphene layers in a scanning electron microscope. Appl. Phys. Lett. 98, 243117 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    C. Thiele, A. Felten, T.J. Echtermeyer, A.C. Ferrari, C. Casiraghi, H.V. Lohneysen, R. Krupke, Electron-beam-induced direct etching of graphene. Carbon 64, 84–91 (2013)CrossRefGoogle Scholar
  39. 39.
    D.D. Kulkarni, K. Rykaczewski, S. Singamaneni, S. Kim, A.G. Fedorov, V.V. Tsukruk, Thermally induced transformation of amorphous carbon nanostructures fabricated by electron beam induced deposition. ACS Appl. Mater. Interfaces 3(3), 710–720 (2011)CrossRefGoogle Scholar
  40. 40.
    D. Kulkarni, S.-K. Kim, A.G. Fedorov, V.V. Tsukruk, Fast light-induced phase transformations of carbon on metal nanoparticles. Adv. Funct. Mat., 22(10), 2129–2139 (2012)Google Scholar
  41. 41.
    N.A. Roberts, J.D. Fowlkes, G.A. Magel, P.D. Rack, Enhanced purity and resolution via laser assisted electron beam induced deposition of platinum. Nanoscale 5(1), 408–415 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    F. Xia, V. Perebeinos, Y. Lin, Y. Wu, P. Avouris, The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 6, 179–184 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Chai, A. Hazeghi, K. Takei, H.Y. Chen, P.C.H. Chan, A. Javey, H.S.P. Wong, Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans. Electron Device 59(1), 12–19 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    S.C. Lim, J.H. Jang, D.J. Bae, G.H. Han, S. Lee, I.S. Yeo, Y.H. Lee, Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl. Phys. Lett. 95(26), 264103 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    M. Shiraishi, M. Ata, Work function of carbon nanotubes. Carbon 39(12), 1913–1917 (2001)CrossRefGoogle Scholar
  46. 46.
    C.H. Jin, J.Y. Wang, Q. Chen, L.M. Peng, In situ fabrication and graphitization of amorphous carbon nanowires and their electrical properties. J. Phys. Chem. B 110, 5423–5428 (2006)CrossRefGoogle Scholar
  47. 47.
    A. Callegari, D.A. Buchanan, H. Hovel, E. Simonyi, A. Marwick, Thermal stability and electrical properties of hydrogenated amorphous carbon film. Appl. Phys. Lett. 65(25), 3200–3202 (1994)ADSCrossRefGoogle Scholar
  48. 48.
    K. Rykaczewski, M. Henry, A.G. Fedorov, Electron beam induced deposition of residual hydrocarbons in the presence of a multiwall carbon nanotube. Appl. Phys. Lett. 95(11), 113112–113115 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    A.G. Fedorov, K. Rykaczewski, Electron Beam Induced Deposition of Interface to Carbon Nanotube. U.S. Patent No. 8,207,058 (2012)Google Scholar
  50. 50.
    A.C. Ferrari, J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)Google Scholar
  51. 51.
    Y. Sui, J. Appenzeller, Screening and interlayer coupling in multilayer graphene field-effect transistors. Nano Lett. 9(8), 2973–2977 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    S.M. Song, J.K. Park, O.J. Sul, B.J. Cho, Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett. 12, 3887–3892 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    K. Rykaczewski, O.J. Hildreth, D. Kulkarni, M. Henry, S.-K. Kim, C.P. Wong, V.V. Tsukruk, A.G. Fedorov, Maskless and resist-free rapid prototyping of three dimensional silicon structures through Electron Beam Induced Deposition (EBID) of carbon in combination with Metal assisted Chemical Etching (MaCE) of Silicon. ACS Appl. Mat. Interfaces 2(4), 969–973 (2010)Google Scholar
  54. 54.
    K. Rykaczewski, O.J. Hildreth, C.P. Wong, A.G. Fedorov, J.H.J. Scott, Directed 2D-to-3D pattern transfer method for controlled fabrication of topologically complex three-dimensional features in silicon. Adv. Mater. 23(5), 659–663 (2011)CrossRefGoogle Scholar
  55. 55.
    K. Rykaczewski, O.J. Hildreth, C.P. Wong, A.G. Fedorov, J.H.J. Scott, Guided three-dimensional catalyst folding during metal-assisted chemical etching of silicon. Nano Lett. 11(6), 2369–2374 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrei G. Fedorov
    • 1
    • 2
  • Songkil Kim
    • 1
  • Mathias Henry
    • 1
  • Dhaval Kulkarni
    • 3
  • Vladimir V. Tsukruk
    • 3
  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations