Applied Physics A

, Volume 117, Issue 4, pp 1645–1658 | Cite as

Present and future applications of magnetic nanostructures grown by FEBID

  • J. M. De TeresaEmail author
  • A. Fernández-PachecoEmail author


Currently, magnetic nanostructures are routinely grown by focused electron beam induced deposition (FEBID). In the present article, we review the milestones produced in the topic in the past as well as the future applications of this technology. Regarding past milestones, we highlight the achievement of high-purity cobalt and iron deposits, the high lateral resolution obtained, the growth of 3D magnetic deposits, the exploration of magnetic alloys and the application of magnetic deposits for Hall sensing and in domain-wall conduit and magnetologic devices. With respect to future perspectives of the topic, we emphasize the potential role of magnetic nanostructures grown by FEBID for applications related to highly integrated 2D arrays, 3D nanowires devices, fabrication of advanced scanning-probe systems, basic studies of magnetic structures and their dynamics, small sensors (including biosensors) and new applications brought by magnetic alloys and even exchange biased systems.


FePt Magnetic Force Microscopy Hall Sensor Atomic Content Magnetic Nanostructures 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We warmly acknowledge all our local collaborators in this field along the last years: Rosa Córdoba, Luis Serrano-Ramón, Ricardo Ibarra, Laura Casado, Soraya Sangiao, César Magén, Luis Alfredo Rodríguez, Rodrigo Fernández-Pacheco, Inés Serrano, Jan Marek Michalik, Luis Morellón, Rubén Valero, Isabel Rivas, Gala Simón as well as our external collaborators: E. Snöeck and C. Gatel (CEMES), A. Asenjo, M. Jaafar and Oscar Iglesias-Freire (ICMM), R.Cowburn, D. Petit, L. O’ Brien, J.Lee, H. T. Zeng, E. R. Lewis and D. E. Read (U. Cambridge), Loubens, H. Lavenant, V. V. Naletov and O. Klein, (CEA Saclay), Cz. Kapusta, P. Holuj and A. Szkudlarek (AGH University-Cracow), B. Koopmans, R. Lavrijsen F. J. Schoenaker, T. Ellis, B. Barcones, J. T. Kohlhepp and H. J. M. Swagten, (Eindhoven Technical University), J. J. L. Mulders and P. Trompenaars (FEI), O. Stéphan and A. Gloter (LPS Orsay), I. Utke and M. S. Gabureac (EMPA), T. Tyliszczak and K. W. Chou (ALS, Berkeley), L. Torres and E. Martínez-Vecino (U. Salamanca). This work was supported by Spanish Ministry of Economy and Competitivity through project No. MAT2011- 27553-C02, including FEDER funds, by the Aragón Regional Government, by the I-LINK0026 project funded by the Spanish CSIC and by a Marie Curie Intra European Fellowship project No. 251698: 3DMAGNANOW, funded by the 7th European Community Framework Programme.


  1. 1.
    I. Utke, P. Hoffmann, R. Berger, L. Scandella, High-resolution magnetic Co supertips grown by a focused electron beam. Appl. Phys. Lett. 80, 4792–4794 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    G. Boero, I. Utke, T. Bret, N. Quack, M. Todorova, S. Mouaziz, P. Kejik, J. Brugger, R.S. Popovic, P. Hoffmann, Submicrometer Hall devices fabricated by focused electron-beam-induced deposition. Appl. Phys. Lett. 86, 042503 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J. Phys. D Appl. Phys. 42, 055005 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    L. Serrano-Ramón, R. Córdoba, L.A. Rodríguez, C. Magen, E. Snoeck, C. Gatel, I. Serrano, M.R. Ibarra, J.M. De Teresa, Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5, 7781–7787 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Fernandez-Pacheco, L. Serrano-Ramón, J. Michalik, M.R. Ibarra, J.M. De Teresa, L. O’Brien, D. Petit, J. Lee, R.P. Cowburn, Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci. Rep. 3, 1492 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J.M. De Teresa, A. Fernandez-Pacheco, L. Serrano-Ramón, R. Córdoba, M.R. Ibarra, Fabrication of magnetic nanostructures by focused electron beam induced deposition (FEBID). J. Phys. D: Appl. Phys. (manuscript in preparation)Google Scholar
  7. 7.
    Y.M. Lau, P.C. Chee, J.T.L. Thong, V. Ng, Properties and applications of cobalt-based material produced by electron-beam-induced deposition. J. Vac. Sci. Technol. A 20, 1295 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    A. Lapicki, E. Ahmad, T. Suzuki, Ion beam induced chemical vapor deposition (IBICVD) of cobalt particles. J. Magn. Magn. Mater. 240, 47–49 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    G. Leven, G. Dumpich, Resistance behavior and magnetization reversal analysis of individual Co nanowires. Phys. Rev. B 71, 064411 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    W. Gil, D. Görlitz, M. Horisberger, J. Kötzler, Magnetoresistance anisotropy of polycrystalline cobalt films: geometrical-size and domain effects. Phys. Rev. B 72, 134401 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    R. Córdoba, R. Fernández-Pacheco, A. Fernández-Pacheco, A. Gloter, C. Magén, O. Stéphan, M.R. Ibarra, J.M. De Teresa, Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM. Nanoscale Res. Lett. 6, 592 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    A. Fernández-Pacheco, J.M. De Teresa, A. Szkudlarek, R. Córdoba, M.R. Ibarra, D. Petit, L. O’Brien, H.T. Zeng, E.R. Lewis, D.E. Read, R.P. Cowburn, Magnetization reversal in individual cobalt micro- and nano-wires grown by focused-electron-beam-induced-deposition. Nanotechnology 20, 475704 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    A. Himeno, T. Okuno, K. Mibu, S. Nasu, T. Shinjo, Temperature dependence of depinning fields in submicron magnetic wires with an artificial neck. J. Magn. Magn. Mater. 286, 167–170 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn, Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Appl. Phys. Lett. 94, 192509 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Magnetic domain-wall logic. Science 309, 1688–1692 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    R. Mattheis, S. Glathe, M. Diegel, U. Hübner, Concepts and steps for the realization of a new domain wall based giant magnetoresistance nanowire device: from the available 24 multiturn counter to a 212 turn counter. J. Appl. Phys. 111, 113920 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    R.P. Cowburn, D. Petit, Spintronics: turbulence ahead. Nat. Mater. 4, 721–722 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    M. Takeguchi, M. Shimojo, K. Furuya, Fabrication of magnetic nanostructures using electron beam induced chemical vapour deposition. Nanotechnology 16, 1321–1325 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    T. Luckasczyk, M. Schirmer, H.P. Steinrück, H. Marbach, Electron-beam-induced deposition in ultra-high vacuum: lithographic fabrication of clean iron nanostructures. Small 4, 841–846 (2008)CrossRefGoogle Scholar
  21. 21.
    R. Lavrijsen, R. Córdoba, F.J. Schoenaker, T. Ellis, B. Barcones, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, J.M. de Teresa, C. Magen, M.R. Ibarra, P. Trompenaars, J.J.L. Mulders, Fe:O: C grown by focused-electron-beam-induced deposition: magnetic and electric properties. Nanotechnology 22, 025302 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    M. Gavagnin, H.D. Wanzenboeck, D. Belic, E. Bertagnolli, Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7, 777–784 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Córdoba, R. Lavrijsen, A. Fernandez-Pacheco, M.R. Ibarra, F. Schoenaker, T.H. Ellis, B. Barcones-Campo, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, J.J.L. Mulders, J.M. de Teresa, Giant anomalous Hall effect in Fe-based microwires grown by focused-electron-beam-induced deposition. J. Phys. D Appl. Phys. 45, 035001 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    R.C. Che, M. Takeguchi, M. Shimojo, W. Zhang, K. Furuya, Fabrication and electron holography characterization of FePt alloy nanorods. Appl. Phys. Lett. 87, 223109 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Q.Y. Xu, Y. Kageyama, T. Suzuki, Ion-beam-induced chemical-vapor deposition of FePt and CoPt particles. J. Appl. Phys. 97, 10K308 (2005)Google Scholar
  26. 26.
    L. Bernau, M. Gabureac, R. Erni, I. Utke, Tunable nanosynthesis of composite materials by electron-impact reaction. Angew. Chem. Int. Ed. 49, 8880–8884 (2010)CrossRefGoogle Scholar
  27. 27.
    M.S. Gabureac, L. Bernau, I. Utke, Granular Co–C nano-Hall sensors by focused-beam-induced deposition. Nanotechnology 21, 115503 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    E. Nikulina, O. Idigoras, P. Vavassori, A. Chuvilin, A. Berger, Magneto-optical magnetometry of individual 30 nm cobalt nanowires grown by electron beam induced deposition. Appl. Phys. Lett. 100, 142401 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    G.C. Gazzadi, J.J.L. Mulders, P. Trompenaars, A. Ghirri, A. Rota, M. Affronte, S. Frabboni, Characterization of a new cobalt precursor for focused beam deposition of magnetic nanostructures. Microelectron. Eng. 88, 1955–1958 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Jafaar, L. Serrano-Ramón, O. Iglesias-Freire, A. Fernández-Pacheco, M.R. Ibarra, J.M. de Teresa, A. Asenjo, Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy. Nanoscale Res. Lett. 6, 407 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    R.P. Cowburn, Property variation with shape in magnetic nanoelements. J. Phys. D Appl. Phys. 33, R1–R16 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    M. Gavagnin, H.D. Wanzenboeck, D. Belic, M.M. Shawrav, A. Persson, K. Gunnarsson, P. Svendlindh, E. Bertagnolli, Magnetic force microscopy study of shape engineered FEBID iron nanostructures. Phys. Status Solidi A 211, 368–374 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Sangiao, L. Morellon, M.R. Ibarra, J.M. De Teresa, Ferromagnet-superconductor nanocontacts grown by focused electron/ion beam techniques for current-in-plane Andreev reflection measurements. Solid State Commun. 151, 37–41 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    P. Bruno, Geometrically constrained magnetic wall. Phys. Rev. Lett. 83, 2425 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    B. Doudin, M. Viret, Ballistic magnetoresistance? J. Phys. Condens. Matter 20, 083201 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    A. Fernández-Pacheco, L.E. Serrano-Ramón, T. Tyliszczak, K.W. Chou, R. Córdoba, A. Szkudlarek, L. O’Brien, C. Kapusta, M.R. Ibarra, J.M. De Teresa, Correlation between the magnetic imaging of cobalt nanoconstrictions and their magnetoresistance response. Nanotechnology 23, 105703 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    C. Vieu, J. Gierak, H. Launois, T. Aign, P. Meyer, J.P. Jamet, J. Ferre, C. Chappert, T. Devolder, V. Mathet, H. Bernas, Modifications of magnetic properties of Pt/Co/Pt thin layers by focused gallium ion beam irradiation. J. Appl. Phys. 91, 3103 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    D. Ozkaya, R.M. Langford, W.L. Chan, A.K.J. Petford-Long, Effect of Ga implantation on the magnetic properties of permalloy thin films. J. Appl. Phys. 91, 9937 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    L. Serrano-Ramón, A. Fernández-Pacheco, M.R. Ibarra, T. Tyliszczak, J.M. De Teresa, Modification of domain-wall propagation in Co nanowires via Ga+ irradiation. Eur. Phys. J. B 86, 97 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    D. Petit, A.-V. Jausovec, H.T. Zeng, E. Lewis, L. O’Brien, D. Read, R.P. Cowburn, High efficiency domain wall gate in ferromagnetic nanowires. Appl. Phys. Lett. 93, 163108 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    L. Serrano-Ramón, A. Fernández-Pacheco, R. Córdoba, C. Magen, L.A. Rodríguez, D. Petit, R.P. Cowburn, M.R. Ibarra, J.M. De Teresa, Improvement of domain wall conduit properties in cobalt nanowires by global gallium irradiation. Nanotechnology 24, 345703 (2013)CrossRefGoogle Scholar
  42. 42.
    E. Nikulina, O. Idigoras, J.M. Porro, P. Vavassori, A. Chuvilin, A. Berger, Origin and control of magnetic exchange coupling in between focused electron beam deposited cobalt nanostructures. Appl. Phys. Lett. 103, 123112 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    A. Fert, L. Piraux, Magnetic nanowires. J. Magn. Magn. Mater. 200, 338 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    F. Porrati, E. Begun, M. Winhold, C.H. Schwalb, R. Sachser, A.S. Frangakis, M. Huth, Room temperature L1(0) phase transformation in binary CoPt nanostructures prepared by focused-electron-beam-induced deposition. Nanotechnology 23, 185702 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    F. Porrati, B. Kämpken, A. Terfort, M. Huth, Fabrication and electrical transport properties of binary Co–Si nanostructures prepared by focused electron beam-induced deposition. J. Appl. Phys. 113, 053707 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    M.T. Niemier, G.H. Bernstein, G. Csaba, A. Dingler, X.S. Hu, S. Kurtz, S. Liu, J. Nahas, W. Porod, M. Siddiq, E. Varga, Nanomagnet logic: progress toward system-level integration. J. Phys. Condens. Matter 23, 493202 (2011)CrossRefGoogle Scholar
  47. 47.
    A. Imre, G. Csaba, L. Ji, A. Orlov, G.H. Bernstein, W. Porod, Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Nanotools website:
  49. 49.
    L.M. Belova, O. Hellwig, E. Dobisz, E. Dan, Dahlberg, rapid preparation of electron beam induced deposition Co magnetic force microscopy tips with 10 nm spatial resolution. Rev. Sci. Instrum. 83, 093711 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    S.M. Thompson, The discovery, development and future of GMR: the Nobel Prize 2007. J. Phys. D Appl. Phys. 41, 093001 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    J. Sinova, I. Zutic, New moves of the spintronics tango. Nat. Mater. 11, 368 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    L. O’Brien, D. Petit, E.R. Lewis, R.P. Cowburn, D.E. Read, J. Sampaio, H.T. Zeng, A.-V. Jausovec, Tunable remote pinning of domain walls in magnetic nanowires. Phys. Rev. Lett. 106, 087204 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    J.H. Franken, M. Hoeijmakers, H.J.M. Swagten, B. Koopmans, Tunable resistivity of magnetic domain walls. Phys. Rev. Lett. 108, 037205 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    W.F. van Dorp, B. van Someren, C.W. Hagen, P. Kruit, Approaching the resolution limit of nanometer-scale electron beam-induced deposition. Nano Lett. 5, 1303 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    J.M. De Teresa, R. Córdoba, Arrays of densely-packed isolated nanowires by focused beam induced deposition plus Ar+ milling. ACS Nano. 8(4), 3788–3795 (2014)CrossRefGoogle Scholar
  56. 56.
    J.H. Franken, M.A.J. van der Heijden, T.H. Ellis, R. Lavrijsen, C. Daniels, D. McGrouther, H.J.M. Swagten, B. Koopmans, Beam-induced Fe nanopillars as tunable domain-wall pinning sites. Adv. Funct. Mater. 24(23), 3508–3514 (2014). doi: 10.1002/adfm.201303540 CrossRefGoogle Scholar
  57. 57.
    J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Phys. Rep. 422, 65 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    J.M. De Teresa, P. Holuj, R. Córdoba, R. Fernández-Pacheco, J.M. Michalik, Fabrication of cobalt trifluoride (CoF3) phase from metallic cobalt by XeF2-assisted focused electron bean induced processing. Microelectron. Eng. 125, 78–82 (2014). doi: 10.1016/j.mee.2014.01.002 CrossRefGoogle Scholar
  59. 59.
    E.O. Wollan, Magnetic coupling in crystalline compounds. A phenomenological theory of magnetism in 3d metals. Phys. Rev. B 117, 387 (1960)ADSCrossRefGoogle Scholar
  60. 60.
    B. Pigeau, C. Hahn, G. de Loubens, V.V. Naletov, O. Klein, K. Mitsuzuka, D. Lacour, M. Hehn, S. Andrieu, F. Montaigne, Measurement of the dynamical dipolar coupling in a pair of magnetic nanodisks using a ferromagnetic resonance force microscope. Phys. Rev. Lett. 109, 247602 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    H.-J. Chia, F. Guo, L.M. Belova, R.D. McMichael, Spectroscopic defect imaging in magnetic nanostructure arrays. Appl. Phys. Lett. 101, 042408 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    H. Lavenant, V.V. Naletov, O. Klein, G. de Loubens, L. Casado, J.M. De Teresa, Mechanical magnetometry of cobalt nanospheres deposited by focused electron beam at the tip of ultra-soft cantilevers. Nanofabrication 1, 65–73 (2014)CrossRefGoogle Scholar
  63. 63.
    M.S. Gabureac, L. Bernau, G. Boero, I. Utke, Single superparamagnetic bead detection and direct tracing of beadposition using novel nanocomposite nano-Hall sensors. IEEE Trans. Nanotechnol. 12, 668–673 (2013)CrossRefGoogle Scholar
  64. 64.
    D. Serrate, J.M. De Teresa, C. Marquina, J. Marzo, D. Saurel, F.A. Cardoso, S. Cardoso, P.P. Freitas, M.R. Ibarra, Quantitative biomolecular sensing station based on magnetoresistive patterned arrays. Biosci. Bioelectron. 35, 206–212 (2012)CrossRefGoogle Scholar
  65. 65.
    S. Reyntjens, R. Puers, A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287–300 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    L.A. Rodríguez, C. Magén, E. Snoeck, L. Serrano-Ramón, C. Gatel, R. Córdoba, E. Martínez-Vecino, L. Torres, J.M. De Teresa, M.R. Ibarra, Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy. Appl. Phys. Lett. 102, 022418 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC-Universidad de ZaragozaSaragossaSpain
  2. 2.Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA)Universidad de ZaragozaSaragossaSpain
  3. 3.TFM Group, Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations