Applied Physics A

, Volume 117, Issue 3, pp 987–995 | Cite as

Electron beam induced surface activation: a method for the lithographic fabrication of nanostructures via catalytic processes

  • Hubertus Marbach
Invited paper


In focused electron beam induced processing (FEBIP), the very narrow electron beam of a scanning electron microscope or transmission electron microscope is used to locally modify matter on the nanometer scale. Recently, the family of FEBIP could be considerably expanded by the technique of focused electron beam induced surface activation (EBISA). In EBISA, the surface itself gets chemically activated by the impact of the electron beam without the presence of precursor molecules. In the second EBISA processing step, the surface is exposed to a precursor molecule which is then catalytically decomposed at the pre-irradiated/activated areas and eventually continues to grow autocatalytically upon prolonged precursor dosage. In this way, electron irradiation and precursor dosage are effectively separated. One of the advantages is that, due to the autocatalytic growth, the size of the corresponding nanostructures can be controlled by the precursor dosage and corresponding electron proximity effects can be omitted. Another advantage is the parallel processing of the pre-irradiated regions during precursor dosage. This bears the potential to significantly reduce the fabrication times for larger deposits compared to the classical electron beam induced deposition approach, in which precursor molecules are sequentially dissociated by the impact of the electron. The fundamentals and apparent further developments as well as the potential and challenges of the comparably new EBISA technique, and more general of catalytic effects in FEBIP are presented and discussed.


Scanning Tunneling Microscopy Electron Irradiation Precursor Molecule Metal Carbonyl Silicon Oxide Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by DFG through grant MA 4246/1-2, research unit FOR 1878/funCOS and the Excellence Cluster “Engineering of Advanced Materials” granted to the FAU Erlangen-Nürnberg. I am very grateful for the pleasant and fruitful collaboration with my former and present coworkers and students: F. Vollnhals, M. Stark, Dr. S. Ditze, Dr. T. Lukasczyk, Dr. M.-M. Walz, Dr. M. Schirmer, M. Drost, F. Tu, Dr. Esther Carrasco, Dr. F. Porrati, Prof. M. Huth, Prof. O. Diwald, Prof. G. Thornton and Prof. H.-P. Steinrück. This work was conducted within the framework of the COST Action CM1301 (CELINA).


  1. 1.
    F. Vollnhals, P. Wintrich, M.-M. Walz, H.-P. Steinrück, H. Marbach, Electron beam induced surface activation of ultrathin porphyrin layers on Ag(111). Langmuir 29, 12290 (2013)CrossRefGoogle Scholar
  2. 2.
    F. Vollnhals et al., Electron beam-induced writing of nanoscale iron wires on a functional metal oxide. J. Phys. Chem. C 117, 17674 (2013)CrossRefGoogle Scholar
  3. 3.
    M.-M. Walz et al., Electrons as “invisible ink”: fabrication of nanostructures by local electron beam induced activation of SiOx. Angew. Chem. Int. Ed. 49, 4669 (2010)CrossRefGoogle Scholar
  4. 4.
    M.-M. Walz, F. Vollnhals, M. Schirmer, H.-P. Steinrück, H. Marbach, Generation of clean iron nanocrystals on an ultra-thin SiOx film on Si(001). Phys. Chem. Chem. Phys. 13, 17333 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Turchanin et al., Molecular mechanisms of electron-induced cross-linking in aromatic SAMs. Langmuir 25, 7342 (2009)CrossRefGoogle Scholar
  6. 6.
    W. Eck et al., Generation of surface amino groups on aromatic self-assembled monolayers by low energy electron beams: a first step towards chemical lithography. Adv. Mater. 12, 805 (2000)CrossRefGoogle Scholar
  7. 7.
    A. Gölzhäuser et al., Chemical nanolithography with electron beams. Adv. Mater. 13, 806 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Zharnikov, M. Grunze, Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: scientific and lithographic aspects. J. Vac. Sci. Technol. B 20, 1793 (2002)CrossRefGoogle Scholar
  9. 9.
    A. Vittadini et al., Defects in oxygen-depleted titanate nanostructures. Langmuir 28, 7851 (2012)CrossRefGoogle Scholar
  10. 10.
    I. Utke, A. Gölzhäuser, Small, minimally invasive, direct: electrons induce local reactions of adsorbed functional molecules on the nanoscale. Angew. Chem. Int. Ed. 49, 9328 (2010)CrossRefGoogle Scholar
  11. 11.
    C.R. Arumainayagam, H.L. Lee, R.B. Nelson, D.R. Haines, R.P. Gunawardane, Low-energy electron-induced reactions in condensed matter. Surf. Sci. Rep. 65, 1 (2010)CrossRefADSGoogle Scholar
  12. 12.
    B.A. Joyce, J.H. Neave, Electron beam-adsorbate interactions on silicon surfaces. Surf. Sci. 34, 401 (1973)CrossRefADSGoogle Scholar
  13. 13.
    C. Klauber, M.D. Alvey, J.T. Yates Jr, NH3 adsorption on Ni(110) and the production of the NH2 species by electron irradiation. Surf. Sci. 154, 139 (1985)CrossRefADSGoogle Scholar
  14. 14.
    R.D. Ramsier, M.A. Henderson, J.T. Yates, Electron induced decomposition of Ni(Co)4 adsorbed on Ag(111). Surf. Sci. 257, 9 (1991)CrossRefADSGoogle Scholar
  15. 15.
    J.M. White, Using photons and electrons to drive surface chemical reactions. J. Mol. Catal. A Chem. 131, 71 (1998)CrossRefGoogle Scholar
  16. 16.
    H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum, High-resolution electron-beam induced deposition. J. Vac. Sci. Technol. B 6, 477 (1988)CrossRefGoogle Scholar
  17. 17.
    S. Matsui, T. Ichihashi, M. Mito, Electron beam induced selective etching and deposition technology. J. Vac. Sci. Technol. B 7, 1182 (1989)CrossRefGoogle Scholar
  18. 18.
    S. Matsui, K. Mori, New selective deposition technology by electron-beam induced surface reaction. J. Vac. Sci. Technol. B 4, 299 (1986)CrossRefGoogle Scholar
  19. 19.
    S.-W. Hla, K.-H. Rieder, STM Control Of Chemical Reactions: single-molecule synthesis. Annu. Rev. Phys. Chem. 54, 307 (2003)CrossRefADSGoogle Scholar
  20. 20.
    M.A. Walsh, M.C. Hersam, Atomic-scale templates patterned by ultrahigh vacuum scanning tunneling microscopy on silicon. Annu. Rev. Phys. Chem. 60, 193 (2009)CrossRefADSGoogle Scholar
  21. 21.
    I. Utke, P. Hoffmann, J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B 26, 1197 (2008)CrossRefGoogle Scholar
  22. 22.
    W.F. van Dorp, C.W. Hagen, A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104, 081301 (2008)CrossRefADSGoogle Scholar
  23. 23.
    S.J. Randolph, J.D. Fowlkes, P.D. Rack, Focused, nanoscale electron-beam-induced deposition and etching. Crit. Rev. Solid State Mater. Sci. 31, 55 (2006)CrossRefADSGoogle Scholar
  24. 24.
    K. Edinger et al., Electron-beam-based photomask repair. J. Vac. Sci. Technol., B 22, 2902 (2004)CrossRefGoogle Scholar
  25. 25.
    G. Boero et al., Submicrometer Hall devices fabricated by focused electron-beam-induced deposition. Appl. Phys. Lett. 86, 042503 (2005)CrossRefADSGoogle Scholar
  26. 26.
    Y.M. Lau, P.C. Chee, J.T.L. Thong, V. Ng, Properties and Applications of Cobalt-Based Material Produced by Electron-Beam-Induced Deposition, in 38th National Symposium of the American Vacuum Society, vol. 20 (2002), p. 1295Google Scholar
  27. 27.
    M. Schirmer et al., Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100). Nanotechnology 22, 085301 (2011)CrossRefADSGoogle Scholar
  28. 28.
    M.-M. Walz et al., Thin membranes versus bulk substrates: investigation of proximity effects in focused electron beam-induced processing. J. Phys. D Appl. Phys. 45, 225306 (2012)CrossRefADSGoogle Scholar
  29. 29.
    M.-M. Walz et al., Investigation of Proximity Effects in Electron Microscopy and Lithography. Appl. Phys. Lett. 100, 053118 (2012)CrossRefADSGoogle Scholar
  30. 30.
    T. Bret, I. Utke, P. Hoffmann, M. Abourida, P. Doppelt, Electron range effects in focused electron beam induced deposition of 3D nanostructures. Microelectron. Eng. 83, 1482 (2006)CrossRefGoogle Scholar
  31. 31.
    V. Gopal et al., Rapid prototyping of site-specific nanocontacts by electron and ion beam assisted direct-write nanolithography. Nano Lett. 4, 2059 (2004)CrossRefADSGoogle Scholar
  32. 32.
    V. Gopal, E.A. Stach, V.R. Radmilovic, I.A. Mowat, Metal delocalization and surface decoration in direct-write nanolithography by electron beam induced deposition. Appl. Phys. Lett. 85, 49 (2004)CrossRefADSGoogle Scholar
  33. 33.
    H. Plank, D.A. Smith, T. Haber, P.D. Rack, F. Hofer, Fundamental proximity effects in focused electron beam induced deposition. ACS Nano 6, 286 (2011)CrossRefGoogle Scholar
  34. 34.
    W.F. van Dorp, S. Lazar, C.W. Hagen, P. Kruit, Solutions to a proximity effect in high resolution electron beam induced deposition. J. Vac. Sci. Technol. B 25, 1603 (2007)CrossRefGoogle Scholar
  35. 35.
    A. Botman, J.J.L. Mulders, C.W. Hagen, Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20, 372001 (2009)CrossRefGoogle Scholar
  36. 36.
    A. Botman, J.J.L. Mulders, R. Weemaes, S. Mentink, Purification of platinum and gold structures after electron-beam-induced deposition. Nanotechnology 17, 3779 (2006)CrossRefADSGoogle Scholar
  37. 37.
    T. Lukasczyk, M. Schirmer, H.-P. Steinrück, H. Marbach, Electron-beam-induced deposition in ultrahigh vacuum: lithographic fabrication of clean iron nanostructures. Small 4, 841 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Schirmer et al., Fabrication of layered nanostructures by successive electron beam induced deposition with two precursors: protective capping of metallic iron structures. Nanotechnology 22, 475304 (2011)CrossRefADSGoogle Scholar
  39. 39.
    F. Porrati et al., Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth. J. Phys. D Appl. Phys. 44, 425001 (2011)CrossRefADSGoogle Scholar
  40. 40.
    K. Muthukumar et al., Spontaneous dissociation of Co2(CO)8 and autocatalytic growth of Co on SiO2: a combined experimental and theoretical investigation. Beilstein J. Nanotechnol. 3, 546 (2012)CrossRefGoogle Scholar
  41. 41.
    A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J. Phys. D Appl. Phys. 42, 055005 (2009)CrossRefADSGoogle Scholar
  42. 42.
    L.M. Belova et al., Rapid electron beam assisted patterning of pure cobalt at elevated temperatures via seeded growth. Nanotechnology 22, 145305 (2011)CrossRefADSGoogle Scholar
  43. 43.
    A.J.M. Mackus, S.A.F. Dielissen, J.J.L. Mulders, W.M.M. Kessels, Nanopatterning by direct-write atomic layer deposition. Nanoscale 4, 4477 (2012)CrossRefADSGoogle Scholar
  44. 44.
    S. Engmann et al., Absolute cross sections for dissociative electron attachment and dissociative ionization of cobalt tricarbonyl nitrosyl in the energy range from 0 eV to 140 eV. J. Chem. Phys. 138, 044305 (2013)CrossRefADSGoogle Scholar
  45. 45.
    G.C. Gazzadi et al., Focused electron beam deposition of nanowires from cobalt tricarbonyl nitrosyl (Co(CO)3NO) precursor. J. Phys. Chem. C 115, 19606 (2011)CrossRefGoogle Scholar
  46. 46.
    G.C. Gazzadi et al., Characterization of a new cobalt precursor for focused beam deposition of magnetic nanostructures. Microelectron. Eng. 88, 1955 (2011)CrossRefGoogle Scholar
  47. 47.
    J.J.L. Mulders, L.M. Belova, A. Riazanova, Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement. Nanotechnology 22, 055302 (2011)CrossRefADSGoogle Scholar
  48. 48.
    S.G. Rosenberg, M. Barclay, D.H. Fairbrother, Electron beam induced reactions of adsorbed cobalt tricarbonyl nitrosyl (Co(CO)3NO) molecules. J. Phys. Chem. C 117, 16053 (2013)CrossRefGoogle Scholar
  49. 49.
    I. Utke et al., Thermal effects during focused electron beam induced deposition of nanocomposite magnetic-cobalt-containing tips. Microelectron. Eng. 73–74, 553 (2004)CrossRefGoogle Scholar
  50. 50.
    M.A. Bruk et al., Focused electron beam-induced deposition of iron- and carbon-containing nanostructures from triiron dodecacarbonyl vapor. High Energy Chem. 39, 65 (2005)CrossRefGoogle Scholar
  51. 51.
    G. Hochleitner, H.D. Wanzenboeck, E. Bertagnolli, Electron beam induced deposition of iron nanostructures. J. Vac. Sci. Technol. B 26, 939 (2008)CrossRefGoogle Scholar
  52. 52.
    M. Shimojo, M. Takeguchi, K. Furuya, Formation of crystalline iron oxide nanostructures by electron beam-induced deposition at room temperature. Nanotechnology 17, 3637 (2006)CrossRefADSGoogle Scholar
  53. 53.
    M. Shimojo, M. Takeguchi, M. Tanaka, K. Mitsuishi, K. Furuya, Electron beam-induced deposition using iron carbonyl and the effects of heat treatment on nanostructure. Appl. Phys. A Mater. Sci. Process. 79, 1869 (2004)CrossRefADSGoogle Scholar
  54. 54.
    M. Takeguchi et al., Fabrication of nanostructures with different iron concentration by electron beam induced deposition with a mixture gas of iron carbonyl and ferrocene, and their magnetic properties. J. Mater. Sci. 41, 4532 (2006)CrossRefADSGoogle Scholar
  55. 55.
    W. Zhang, M. Shimojo, M. Takeguchi, R.C. Che, K. Furuya, Generation mechanism and in situ growth behavior of alpha-iron nanocrystals by electron beam induced deposition. Adv. Eng. Mater. 8, 711 (2006)CrossRefGoogle Scholar
  56. 56.
    M. Gavagnin, H.D. Wanzenboeck, D. Belić, E. Bertagnolli, Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7, 777 (2012)CrossRefGoogle Scholar
  57. 57.
    M. Huth et al., Focused electron beam induced deposition: a perspective. Beilstein J. Nanotechnol. 3, 597 (2012)CrossRefGoogle Scholar
  58. 58.
    R.R. Kunz, T.M. Mayer, Electron beam induced surface nucleation and low-temperature decomposition of metal carbonyls. J. Vac. Sci. Technol., B 6, 1557 (1988)CrossRefGoogle Scholar
  59. 59.
    R.R. Kunz, T.E. Allen, T.M. Mayer, Selective area deposition of metals using low-energy electron beams. J. Vac. Sci. Technol. B 5, 1427 (1987)CrossRefGoogle Scholar
  60. 60.
    R.R. Kunz, T.M. Mayer, Catalytic growth rate enhancement of electron beam deposited iron films. Appl. Phys. Lett. 50, 962 (1987)CrossRefADSGoogle Scholar
  61. 61.
    F. Zaera, Mechanism for the decomposition of iron pentacarbonyl on platinum(111): evidence for iron tetracarbonyl and iron tricarbonyl intermediates. Surf. Sci. 255, 280 (1991)CrossRefADSGoogle Scholar
  62. 62.
    F. Zaera, A kinetic study of the chemical vapor deposition of iron films using iron pentacarbonyl. Langmuir 7, 1188 (1991)CrossRefGoogle Scholar
  63. 63.
    M. Xu, F. Zaera, Mechanistic studies of the thermal decomposition of metal carbonyls on Ni(100) surfaces in connection with chemical vapor deposition processes. J. Vac. Sci. Technol. A Vac. Surf. Films 14, 415 (1996)CrossRefADSGoogle Scholar
  64. 64.
    M. Gavagnin, H.D. Wanzenboeck, D. Belić, E. Bertagnolli, Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7, 777 (2013)CrossRefGoogle Scholar
  65. 65.
    T. Lukasczyk, M. Schirmer, H.-P. Steinrück, H. Marbach, Generation of clean iron structures by electron-beam-induced deposition and selective catalytic decomposition of iron pentacarbonyl on Rh(110). Langmuir 25, 11930 (2009)CrossRefGoogle Scholar
  66. 66.
    N. Miyata, H. Watanabe, M. Ichikawa, Thermal decomposition of an ultrathin si oxide layer around a Si(001)-(2x1) window. Phys. Rev. Lett. 84, 1043 (2000)CrossRefADSGoogle Scholar
  67. 67.
    G. Hollinger, F.J. Himpsel, Probing the transition layer at the SiO2–Si interface using core level photoemission. Appl. Phys. Lett. 44, 93 (1984)CrossRefADSGoogle Scholar
  68. 68.
    T. Block, H. Pfnür, Generation of ultrasmall nanostructures in oxide layers assisted by self-organization. J. Appl. Phys. 103, 064303 (2008)CrossRefADSGoogle Scholar
  69. 69.
    P.J. Feibelman, M.L. Knotek, Reinterpretation of electron-stimulated desorption data from chemisorption systems. Phys. Rev. B 18, 6531 (1978)CrossRefADSGoogle Scholar
  70. 70.
    M.L. Knotek, P.J. Feibelman, Ion desorption by core-hole Auger decay. Phys. Rev. Lett. 40, 964 (1978)CrossRefADSGoogle Scholar
  71. 71.
    M.L. Knotek, J.E. Houston, Application of Auger and characteristic loss spectroscopies to the study of the electronic structure of Ti and TiO2. Phys. Rev. B 15, 4580 (1977)CrossRefADSGoogle Scholar
  72. 72.
    O. Dulub et al., Electron-induced oxygen desorption from the TiO2(011)-2 × 1 surface leads to self-organized vacancies. Science 317, 1052 (2007)CrossRefADSGoogle Scholar
  73. 73.
    C.L. Pang et al., Tailored TiO2(110) surfaces and their reactivity. Nanotechnology 17, 5397 (2006)CrossRefADSGoogle Scholar
  74. 74.
    C.M. Yim, C.L. Pang, G. Thornton, Oxygen vacancy origin of the surface band-gap state of TiO2(110). Phys. Rev. Lett. 104, 036806 (2010)CrossRefADSGoogle Scholar
  75. 75.
    R. Córdoba, J. Sesé, M.R. Ibarra, J.M. De Teresa, Autocatalytic growth of Co on pure Co surfaces using Co2(CO)8 precursor. Appl. Surf. Sci. 263, 242 (2012)CrossRefADSGoogle Scholar
  76. 76.
    S. Ditze et al., Towards the engineering of molecular nanostructures: local anchoring and functionalization of porphyrins on model-templates. Nanotechnology 24, 115305 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Lehrstuhl für Physikalische Chemie II and Cluster of Excellence: Engineering of Advanced Materials (EAM)Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations