Advertisement

Applied Physics A

, Volume 116, Issue 3, pp 977–985 | Cite as

Assembly of quantum dots on peptide nanostructures and their spectroscopic properties

  • Emmanouil Kasotakis
  • Athanasia Kostopoulou
  • Miguel Spuch-Calvar
  • Maria Androulidaki
  • Nikos Pelekanos
  • Antonios G. Kanaras
  • Alexandros LappasEmail author
  • Anna MitrakiEmail author
Rapid communication

Abstract

We present a chemical process for the decoration of self-assembled two-dimensional peptide fibrils with two different sizes of CdSe@ZnS core–shell quantum dots (Qdots) capped with trioctylphosphine oxide molecules. The attachment of the semiconducting nanoparticles to the fibrils is directed via disulfide bond between the quantum dot and cysteine aminoacids that are deliberately impeded in the peptide structures. A significant red shift in the emission spectra of the quantum dots is observed and attributed to the synergistic interaction between adjacent nanoparticles arranged on peptide film templates extending over hundreds of nanometers.

Keywords

Fibril Trioctylphosphine Oxide Electronic Energy Transfer Fibril Axis Ligand Exchange Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the European Commission through the STREP project BeNATURAL (Grant no NMP4-CT-2006-033256) and Marie-Curie Transfer of Knowledge program NANOTAIL (Grant no. MTKD-CT-2006-042459). We thank Dr. M. Mitrakas and Dr. K. Simeonidis for the atomic absorption spectroscopy measurements. We are grateful to Ms. Alexandra Siakouli-Galanopoulou for expert technical assistance with TEM measurements.

References

  1. 1.
    A.P. Alivisatos, Science 271, 933–937 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    A.P. Alivisatos, J. Phys. Chem. Us 100, 13226–13239 (1996)Google Scholar
  3. 3.
    R. Gill, M. Zayats, I. Willner, Angew. Chem. Int. Edit. 47, 7602–7625 (2008)CrossRefGoogle Scholar
  4. 4.
    W.J. Parak, T. Pellegrino, C. Plank, Nanotechnology 16, R9–R25 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    W.J. Parak, R. Boudreau, M. Le Gros, D. Gerion, D. Zanchet, C.M. Micheel, S.C. Williams, A.P. Alivisatos, C. Larabell, Adv. Mater. 14, 882–885 (2002)CrossRefGoogle Scholar
  6. 6.
    X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307, 538–544 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425–2427 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    S. Srivastava, A. Santos, K. Critchley, K.S. Kim, P. Podsiadlo, K. Sun, J. Lee, C.L. Xu, G.D. Lilly, S.C. Glotzer, N.A. Kotov, Science 327, 1355–1359 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, L. Manna, Nano Lett. 10, 743–749 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Chem. Rev. 110, 389–458 (2010)CrossRefGoogle Scholar
  11. 11.
    A. Figuerola, I.R. Franchini, A. Fiore, R. Mastria, A. Falqui, G. Bertoni, S. Bals, G. Van Tendeloo, S. Kudera, R. Cingolani, L. Manna, Adv Mater 21, 550–554 (2009)Google Scholar
  12. 12.
    K. Miszta, J. de Graaf, G. Bertoni, D. Dorfs, R. Brescia, S. Marras, L. Ceseracciu, R. Cingolani, R. van Roij, M. Dijkstra, L. Manna, Nat. Mater. 10, 872–876 (2011)ADSGoogle Scholar
  13. 13.
    K. Overgaag, W. Evers, B. de Nijs, R. Koole, J. Meeldijk, D. Vanmaekelbergh, J. Am. Chem. Soc. 130, 7833+ (2008)Google Scholar
  14. 14.
    Z.Y. Tang, Z.L. Zhang, Y. Wang, S.C. Glotzer, N.A. Kotov, Science 314, 274–278 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    J.S. Son, J.H. Yu, S.G. Kwon, J. Lee, J. Joo, T. Hyeon, Adv. Mater. 23, 3214–3219 (2011)Google Scholar
  16. 16.
    L. Carbone, C. Nobile, M. De Giorgi, F.D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I.R. Franchini, M. Nadasan, A.F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Nano Lett. 7, 2942–2950 (2007)ADSGoogle Scholar
  17. 17.
    K.M. Gattas-Asfura, C.A. Constantine, M.J. Lynn, D.A. Thimann, X.J. Ji, R.M. Leblanc, J. Am. Chem. Soc. 127, 14640–14646 (2005)Google Scholar
  18. 18.
    X.J. Ji, C.S. Wang, J.M. Xu, J.Y. Zheng, K.M. Gattas-Asfura, R.M. Leblanc, Langmuir 21, 5377–5382 (2005)Google Scholar
  19. 19.
    M.R. Jones, R.J. Macfarlane, B. Lee, J.A. Zhang, K.L. Young, A.J. Senesi, C.A. Mirkin, Nat. Mater. 9, 913–917 (2010)ADSGoogle Scholar
  20. 20.
    R.J. Macfarlane, M.N. O’Brien, S.H. Petrosko, C.A. Mirkin, Angew. Chem. Int. Ed. 52, 5688–5698 (2013)Google Scholar
  21. 21.
    M.M. Maye, M.T. Kumara, D. Nykypanchuk, W.B. Sherman, O. Gang, Nat. Nanotechnol. 5, 116–120 (2010)ADSGoogle Scholar
  22. 22.
    A. Heuer-Jungemann, R. Kirkwood, A.H. El-Sagheer, T. Brown, A.G. Kanaras, Nanoscale 5, 7209–7212 (2013)ADSGoogle Scholar
  23. 23.
    D. Coomber, D. Bartczak, S.R. Gerrard, S. Tyas, A.G. Kanaras, E. Stulz, Langmuir 26, 13760–13762 (2010)Google Scholar
  24. 24.
    B. Atmaja, J.N. Cha, A. Marshall, C.W. Frank, Langmuir 25, 707–715 (2009)Google Scholar
  25. 25.
    S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher, Nature 405, 665–668 (2000)ADSGoogle Scholar
  26. 26.
    J. Sharma, Y.G. Ke, C.X. Lin, R. Chhabra, Q.B. Wang, J. Nangreave, Y. Liu, H. Yan, Angew. Chem. Int. Ed. 47, 5157–5159 (2008)Google Scholar
  27. 27.
    E.D. Sone, S.I. Stupp, J. Am. Chem. Soc. 126, 12756–12757 (2004)Google Scholar
  28. 28.
    M.J. van Raaij, A. Mitraki, G. Lavigne, S. Cusack, Nature 401, 935–938 (1999)ADSGoogle Scholar
  29. 29.
    K. Papanikolopoulou, G. Schoehn, V. Forge, V.T. Forsyth, C. Riekel, J.F. Hernandez, R.W.H. Ruigrok, A. Mitraki, J. Biol. Chem. 280, 2481–2490 (2005)Google Scholar
  30. 30.
    P. Tamamis, E. Kasotakis, A. Mitraki, G. Archontis, J. Phys. Chem. B 113, 15639–15647 (2009)Google Scholar
  31. 31.
    E. Kasotakis, E. Mossou, L. Adler-Abramovich, E.P. Mitchell, V.T. Forsyth, E. Gazit, A. Mitraki, Biopolymers 92, 164–172 (2009)Google Scholar
  32. 32.
    B.O. Dabbousi, J. RodriguezViejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B 101, 9463–9475 (1997)Google Scholar
  33. 33.
    M. Lepere, C. Chevallard, J.F. Hernandez, A. Mitraki, P. Guenoun, Langmuir 23, 8150–8155 (2007)Google Scholar
  34. 34.
    W.W. Yu, L.H. Qu, W.Z. Guo, X.G. Peng, Chem. Mater. 15, 2854–2860 (2003)Google Scholar
  35. 35.
    M. Nirmal, D.J. Norris, M. Kuno, M.G. Bawendi, A.L. Efros, M. Rosen, Phys. Rev. Lett. 75, 3728–3731 (1995)ADSGoogle Scholar
  36. 36.
    H. Zhu, M.Z. Hu, L. Shao, K. Yu, R. Dabestani, Md. B. Zaman, S. Liao, J. Nanomater. 2014, 14 (2014)Google Scholar
  37. 37.
    H. Bui, C. Onodera, C. Kidwell, Y. Tan, E. Graugnard, W. Kuang, J. Lee, W.B. Knowlton, B. Yurke, W.L. Hughes, Nano Lett. 10, 3367–3372 (2010)ADSGoogle Scholar
  38. 38.
    C.R. Kagan, C.B. Murray, M.G. Bawendi, Phys. Rev. B 54, 8633–8643 (1996)ADSGoogle Scholar
  39. 39.
    D.W. Piston, M.A. Rizzo, in Fluorescent Proteins, ed. by K.F. Sullivan, 2nd edn. (2008), pp. 415–430Google Scholar
  40. 40.
    R. Baer, E. Rabani, J. Chem. Phys. 128, 184710 (2008)ADSGoogle Scholar
  41. 41.
    S.K. Maity, S. Maity, P. Jana, D. Haldar, CrystEngComm 14, 3156–3162 (2012)Google Scholar
  42. 42.
    X.H. Yan, Y. Cui, Q. He, K.W. Wang, J.B. Li, Chem. Mater. 20, 1522–1526 (2008)Google Scholar
  43. 43.
    C.B. Murray, C.R. Kagan, M.G. Bawendi, Annu. Rev. Mater. Sci. 30, 545–610 (2000)ADSGoogle Scholar
  44. 44.
    H. Dollefeld, H. Weller, A. Eychmuller, J. Phys. Chem. B 106, 5604–5608 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Emmanouil Kasotakis
    • 1
    • 2
  • Athanasia Kostopoulou
    • 2
  • Miguel Spuch-Calvar
    • 2
  • Maria Androulidaki
    • 2
  • Nikos Pelekanos
    • 1
    • 2
  • Antonios G. Kanaras
    • 3
    • 4
  • Alexandros Lappas
    • 2
    Email author
  • Anna Mitraki
    • 1
    • 2
    Email author
  1. 1.Department of Materials Science and TechnologyUniversity of CreteHeraklionCrete, Greece
  2. 2.Institute of Electronic Structure and LaserFoundation for Research and Technology-HellasHeraklionCrete, Greece
  3. 3.Department of Physics and Astronomy, Faculty of Physical Sciences and EngineeringUniversity of SouthamptonSouthamptonUK
  4. 4.Institute for Life SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations