Applied Physics A

, Volume 116, Issue 3, pp 947–954 | Cite as

On the symmetry and topology of plasmonic eigenmodes in heptamer and hexamer nanocavities

  • Nahid Talebi
  • Burcu Ögüt
  • Wilfried Sigle
  • Ralf Vogelgesang
  • Peter A. van Aken


Plasmonics is expected to play a key role in nanotechnology, leading to intriguing routes in many engineering and biological applications. Recently, it has been realized that toroidal resonances could be an alternative to electric and magnetic resonances, which have governed the innovation of plasmonic applications so far. In a previous contribution, we proved the existence of toroidal moments in an oligomeric void-plasmonic structure [1]. In this article, we investigate the role of topology and symmetry in decomposing the various dipolar, quadrupolar, and toroidal moments, using energy-filtering transmission electron microscopy supported by three-dimensional finite-difference time-domain method simulations. The consequences of changing the topology on the toroidal character are discussed by comparing results obtained from nanoholes forming heptamer and hexamer nanocavity systems that were drilled into a thin silver film.


Ring Resonator Electron Energy Loss Spectroscopy Electron Energy Loss Spectroscopy Spectrum Toroidal Mode Toroidal Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the support of U. Eigenthaler and I. Lakemeyer for the specimen preparation; C. T. Koch for writing the scripts regarding the EFTEM acquisition and peak finding algorithm. N. Talebi acknowledges the Alexander-von-Humboldt Foundation for financial support. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under Grant agreement no. 312483 (ESTEEM2).


  1. 1.
    B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P.A. van Aken, Nano Lett. 12, 5239 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    E. Ozbay, Science 311, 189 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J.L. West, N.J. Halas, Annu. Rev. Biomed. Eng. 5, 285 (2003)CrossRefGoogle Scholar
  5. 5.
    L. Gu, W. Sigle, C.T. Koch, B. Ögüt, P.A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, J. Mao, Phys. Rev. B 83, 195433 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P.A. van Aken, M.E. Toimil-Molares, ACS Nano 5, 9845 (2011)CrossRefGoogle Scholar
  7. 7.
    V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernández, I. Pastoriza-Santos, K.F. MacDonald, L. Henrard, L.M. Liz-Marzán, N.I. Zheludev, M. Kociak, Nanoletters 12, 4172 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    F. Hao, C.L. Nehl, J. Hafner, P. Nordlander, Nano Lett. 7, 729 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    F.J. Garcia de Abajo, Rev. Mod. Phys. 79, 1267 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    P.E. Batson, Phys. Rev. Lett. 49, 936 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    W. Sigle, J. Nelayah, C.T. Koch, B. Ögüt, L. Gu, P.A. van Aken, Ultramicroscopy 110, 1094 (2010)CrossRefGoogle Scholar
  12. 12.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Elsevier, Amsterdam, 1980), p. 110ffGoogle Scholar
  13. 13.
    T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, N.I. Zheludev, Science 330, 1510 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Y.-W. Huang, W.T. Chen, P.C. Wu, V.A. Fedotov, N.I. Zheludev, D.P. Tsai, Sci. Rep. (2013). doi: 10.1038/srep01237 Google Scholar
  15. 15.
    Z.-G. Dong, J. Zu, X. Yin, J. Li, C. Lu, X. Zhang, Phys. Rev. B 87, 245429 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    R.L. Lyles, S.J. Rothman, W. Jäger, Metallography 11, 361 (1978)CrossRefGoogle Scholar
  17. 17.
    T. Malis, S.C. Cheng, R.F. Egerton, J. Electron Microsc. Tech. 8, 193 (1988)CrossRefGoogle Scholar
  18. 18.
    C.T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, M. Matijevic, Microsc. Microanal. 12, 506 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, R. Höschen, Ultramicroscopy 110, 971 (2010)CrossRefGoogle Scholar
  20. 20.
    N. Talebi, W. Sigle, R. Vogelgesang, C.T. Koch, C. Fernandez-Lopez, L.M. Liz-Marzan, B. Ögüt, M. Rohm, P.A. van Aken, Langmuir 28, 8867 (2012)CrossRefGoogle Scholar
  21. 21.
    N. Talebi, M. Shahabadi, J. Phys. D Appl. Phys. 43, 135302 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    F.J. Garcia de Abajo, M. Kociak, Phys. Rev. B 100, 106801 (2008)Google Scholar
  23. 23.
    S.A. Maier, P.G. Kik, H.A. Atwater, S. Melzer, E. Harel, B.E. Koel, A.A.G. Requicha, Nat. Mater. 2, 229–232 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    S.M. Raeis Zadeh Bajestani, M. Shahabadi, N. Talebi, J. Opt. Soc. Am. B 28, 937–943 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    N. Talebi, A. Mahjoubfar, M. Shahabadi, J. Opt. Soc. Am. B 25, 2116–2122 (2008)CrossRefGoogle Scholar
  26. 26.
    F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E.M. Girotto, A.G. Brolo, R. Gordon, D. Sinton, Anal. Chem. 81, 4308 (2009)CrossRefGoogle Scholar
  27. 27.
    K.J. Vahala, Nature 424, 839 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nahid Talebi
    • 1
  • Burcu Ögüt
    • 1
  • Wilfried Sigle
    • 1
  • Ralf Vogelgesang
    • 2
  • Peter A. van Aken
    • 1
  1. 1.Stuttgart Center for Electron MicroscopyMax Planck Institute for Intelligent SystemsStuttgartGermany
  2. 2.University of OldenburgOldenburgGermany

Personalised recommendations