Applied Physics A

, Volume 116, Issue 2, pp 545–554 | Cite as

Metastable carbon allotropes in picosecond-laser-modified diamond

  • Sergei M. PimenovEmail author
  • Andrey A. Khomich
  • Igor I. Vlasov
  • Evgeny V. Zavedeev
  • Alexander V. Khomich
  • Beat Neuenschwander
  • Beat Jäggi
  • Valerio Romano
Rapid communication


In this paper, we report on the bulk modifications of type IIa single-crystal diamond with visible 10-ps pulses (at λ = 532 nm) and microstructural changes characterized by the appearance of several ‘unidentifiable’ vibrational modes in the frequency range of 1000–1400 cm−1 in the Raman spectra of laser-modified diamond. It is found that the new Raman modes are strongly pronounced in the spectra of high-stress regions in immediate proximity to the bulk microstructures in the absence of the G mode at ~1580 cm−1 characteristic of the sp2 phase. The high internal stresses are determined from the splitting of the triply degenerate diamond Raman line. The revealed structure transformation is localized within a narrow bulk layer near the bulk microstructures formed, and the stress relaxation is found to result in disappearance of the detected vibrational modes in the spectra. It is suggested that the formation of bulk regions with a sp3 carbon structure consisting of Z-carbon and hexagonal diamond is responsible for the appearance of new Raman modes in the spectra of laser-modified diamond. These findings evidence that the stress-assisted formation of novel metastable carbon phases or defect structures occur in the course of bulk modification of diamond with ps-laser pulses. In addition, we report the results of simulations of internal stresses in the system ‘graphitized cylinder-in-diamond’ to show (1) the effect of the mechanical properties of laser-modified diamond on the resulting stresses and (2) formation of bulk microscopic regions with high stresses of >10 GPa, i.e., the conditions at which various sp3 carbon allotropes and defect structures become more stable than graphite.


Raman Spectrum Raman Band Raman Line Raman Mode Bulk Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was partly supported by the SNSF project IZ73Z0-128088/1.


  1. 1.
    H.O. Jeschke, M.E. Garcia, K.H. Bennemann, Appl. Phys. A 69(Suppl.), S49 (1999)CrossRefADSGoogle Scholar
  2. 2.
    H.O. Jeschke, M.E. Garcia, K.H. Bennemann, Phys. Rev. B 60, R3701 (1999)CrossRefADSGoogle Scholar
  3. 3.
    S. Preuss, M. Stuke, Appl. Phys. Lett. 67, 338 (1995)CrossRefADSGoogle Scholar
  4. 4.
    A.A. Malyutin, S.V. Garnov, S.M. Pimenov, O.G. Tsarkova, V.I. Konov, SPIE 5147, 33 (2003)CrossRefADSGoogle Scholar
  5. 5.
    J.B. Ashcom, PhD thesis (Harvard University, 2003);
  6. 6.
    Y. Shimotsuma, M. Sakakura, S. Kanehira, J. Qiu, P.G. Kazansky, K. Miura, K. Fujita, K. Hirao, J. Laser Micro/Nanoeng. 1, 181 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Shimizu, Y. Shimotsuma, M. Sakakura, T. Yuasa, H. Homma, Y. Minowa, K. Tanaka, K. Miura, K. Hirao, Opt. Express 17, 46 (2009)CrossRefADSGoogle Scholar
  8. 8.
    T.V. Kononenko, M. Meier, M.S. Komlenok, S.M. Pimenov, V. Romano, V.P. Pashinin, V.I. Konov, Appl. Phys. A 90, 645 (2008)CrossRefADSGoogle Scholar
  9. 9.
    T.V. Kononenko, M.S. Komlenok, V.P. Pashinin, S.M. Pimenov, V.I. Konov, M. Neff, V. Romano, W. Lüthy, Diam. Relat. Mater. 18, 196 (2009)CrossRefADSGoogle Scholar
  10. 10.
    M. Neff, T.V. Kononenko, S.M. Pimenov, V. Romano, W. Lüthy, V.I. Konov, Appl. Phys. A 97, 543 (2009)CrossRefADSGoogle Scholar
  11. 11.
    T.V. Kononenko, V.I. Konov, S.M. Pimenov, N.M. Rossukanyi, A.I. Rukovishnikov, V. Romano, Diam. Relat. Mater. 20, 264–268 (2011)CrossRefADSGoogle Scholar
  12. 12.
    S.M. Pimenov, I.I. Vlasov, A.A. Khomich, B. Neuenschwander, M. Muralt, V. Romano, Appl. Phys. A 105, 673 (2011)CrossRefADSGoogle Scholar
  13. 13.
    S.M. Pimenov, A.A. Khomich, I.I. Vlasov, E.V. Zavedeev, B. Neuenschwander, B. Jäggi, V. Romano, ALT Proceedings, vol. 1 (2012). doi: 10.12684/alt.1.50
  14. 14.
    B. Caylar, M. Pomorski, P. Bergonzo, Appl. Phys. Lett. 103, 043504 (2013)CrossRefADSGoogle Scholar
  15. 15.
    A. Oh, B. Caylar, M. Pomorski, T. Wengler, Diam. Relat. Mater. 38, 9 (2013)CrossRefADSGoogle Scholar
  16. 16.
    T. Kononenko, V. Ralchenko, A. Bolshakov, V. Konov, P. Allegrini, M. Pacilli, G. Conte, E. Spiriti, Appl. Phys. A 114, 297 (2014)CrossRefADSGoogle Scholar
  17. 17.
    V.N. Strekalov, V.I. Konov, V.V. Kononenko, S.M. Pimenov, Appl. Phys. A 76, 603 (2003)CrossRefADSGoogle Scholar
  18. 18.
    S.M. Pimenov, B. Neuenschwander, B. Jäggi, V. Romano, Appl. Phys. A 114, 1309 (2014)CrossRefADSGoogle Scholar
  19. 19.
    R.H. Telling, C.J. Pickard, M.C. Payne, J.E. Field, Phys. Rev. Lett. 84, 5160 (2000)CrossRefADSGoogle Scholar
  20. 20.
    W.L. Mao, H. Mao, P.J. Eng, T.P. Trainor, M. Newville, C. Kao, D.L. Heinz, J. Shu, Y. Meng, R.J. Hemley, Science 302, 425 (2003)CrossRefADSGoogle Scholar
  21. 21.
    Q. Li, Y. Ma, A.R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, G. Zou, Phys. Rev. Lett. 102, 175506 (2009)CrossRefADSGoogle Scholar
  22. 22.
    J.-T. Wang, C. Chen, Y. Kawazoe, Phys. Rev. Lett. 106, 075501 (2011)CrossRefADSGoogle Scholar
  23. 23.
    M. Amsler, J.A. Flores-Livas, L. Lehtovaara, F. Balima, S. Alireza Ghasemi, D. Machon, S. Pailhès, A. Willand, D. Caliste, S. Botti, A. San Miguel, S. Goedecker, M.A.L. Marques, Phys. Rev. Lett. 108, 065501 (2012)CrossRefADSGoogle Scholar
  24. 24.
    Zh Li, F. Gao, Z. Xu, Phys. Rev. B 85, 144115 (2012)CrossRefADSGoogle Scholar
  25. 25.
    J.A. Flores-Livas, L. Lehtovaara, M. Amsler, S. Goedecker, S. Pailhès, S. Botti, A. San Miguel, M.A.L. Marques, Phys. Rev. B 85, 155428 (2012)CrossRefADSGoogle Scholar
  26. 26.
    S. Botti, M. Amsler, J.A. Flores-Livas, P. Ceria, S. Goedecker, M.A.L. Marques, Phys. Rev. B 88, 014102 (2013)CrossRefADSGoogle Scholar
  27. 27.
    K. Weingarten, Laser Tech. J. 6(3), 51 (2009)CrossRefGoogle Scholar
  28. 28.
    B. Neuenschwander, G.F. Bucher, C. Nussbaum, B. Joss, M. Muralt, U.W. Hunziker, P. Schuetz, Proc. SPIE 7584, 75840R (2010)CrossRefADSGoogle Scholar
  29. 29.
  30. 30.
    I. Friel, S.I. Clewes, H.K. Dhillon, N. Perkins, D.J. Twitchen, G.A. Scarsbrook, Diam. Relat. Mater. 18, 808 (2009)CrossRefADSGoogle Scholar
  31. 31.
    R.P. Mildren, Intrinsic Optical Properties of Diamond, in Optical Engineering of Diamond, ed. by R.P. Mildren, J.R. Rabeau (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013)Google Scholar
  32. 32.
    A. Wotherspoon, J.W. Steeds, P. Coleman, D. Wolverson, J. Davies, S. Lawson, J. Butler, Diam. Relat. Mater. 11, 692 (2002)CrossRefADSGoogle Scholar
  33. 33.
    A.C. Ferrari, B. Kleinsorge, N.A. Morrison, A. Hart, V. Stolojan, J. Robertson, J. Appl. Phys. 85, 7191 (1999)CrossRefADSGoogle Scholar
  34. 34.
    T.V. Kononenko, A.A. Khomich, V.I. Konov, Diam. Relat. Mater. 37, 50 (2013)CrossRefADSGoogle Scholar
  35. 35.
    M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, Phys. Rev. B 59, R6585 (1999)CrossRefADSGoogle Scholar
  36. 36.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefADSGoogle Scholar
  37. 37.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Volume 7 of A Course of Theoretical Physics) (Pergamon Press, Oxford, 1970)Google Scholar
  38. 38.
    T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. Medlin, P.B. Mirkarimi, Appl. Phys. Lett. 71, 3820 (1997)CrossRefADSGoogle Scholar
  39. 39.
    A.C. Ferrari, J. Robertson, M.G. Beghi, C.E. Botani, R. Ferulano, R. Pastorelli, Appl. Phys. Lett. 75, 1893 (1999)CrossRefADSGoogle Scholar
  40. 40.
    H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes (Properties, Processing and Applications), P.A. Thrower, Editor-in-Chief. (Noyes Publications, Park Ridge, 1993), p. 417Google Scholar
  41. 41.
    J.E. Field, C.S.J. Pickles, Diam. Relat. Mater. 5, 625 (1996)CrossRefADSGoogle Scholar
  42. 42.
    S. Prawer, R.J. Nemanich, Philos. Trans. R. Soc. Lond. A 362, 2537 (2004)CrossRefADSGoogle Scholar
  43. 43.
    M.H. Grimsditch, E. Anastassakis, M. Cardona, Phys. Rev. B 18, 901 (1978)CrossRefADSGoogle Scholar
  44. 44.
    J.M. Boteler, Y.M. Gupta, Phys. Rev. Lett. 71, 3497 (1993)CrossRefADSGoogle Scholar
  45. 45.
    I.I. Vlasov, V.G. Ralchenko, E.D. Obraztsova, A.A. Smolin, V.I. Konov, Appl. Phys. Lett. 71, 1789 (1997)CrossRefADSGoogle Scholar
  46. 46.
    E. Anastassakis, J. Appl. Phys. 86, 249 (1999)CrossRefADSGoogle Scholar
  47. 47.
    S.M. Pimenov, V.V. Kononenko, T.V. Kononenko, V.I. Konov, P. Fischer, V. Romano, H.P. Weber, A.V. Khomich, R.A. Khmelnitskiy, New Diam. Front. Carbon Technol. 14(1), 21 (2004)Google Scholar
  48. 48.
    A. Tardieu, F. Cansell, J.P. Petitet, J. Appl. Phys. 68, 3243 (1990)CrossRefADSGoogle Scholar
  49. 49.
    P. Pavone, K. Karch, O. Shutt, W. Windl, D. Strauch, P. Giannozzi, S. Baroni, Phys. Rev. B 48, 3156 (1993)CrossRefADSGoogle Scholar
  50. 50.
    J.O. Orwa, K.W. Nugent, D.N. Jamieson, S. Prawer, Phys. Rev. B 62, 5461 (2000)CrossRefADSGoogle Scholar
  51. 51.
    O.N. Poklonskaya, A.A. Khomich, J. Appl. Spectrosc. 80, 715 (2013)CrossRefADSGoogle Scholar
  52. 52.
    A.V. Khomich, R.A. Khmelnitskii, X.J. Hu, A.A. Khomich, A.F. Popovich, I.I. Vlasov, V.A. Dravin, Y.G. Chen, A.E. Karkin, V.G. Ralchenko, J. Appl. Spectrosc. 80, 707 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sergei M. Pimenov
    • 1
    Email author
  • Andrey A. Khomich
    • 1
    • 2
  • Igor I. Vlasov
    • 1
  • Evgeny V. Zavedeev
    • 1
  • Alexander V. Khomich
    • 2
  • Beat Neuenschwander
    • 3
  • Beat Jäggi
    • 3
  • Valerio Romano
    • 3
  1. 1.General Physics InstituteMoscowRussia
  2. 2.Institute of Radio Engineering and ElectronicsFryazino, Moscow RegionRussia
  3. 3.Bern University of Applied Sciences, Engineering and Information TechnologyBurgdorfSwitzerland

Personalised recommendations