Applied Physics A

, Volume 117, Issue 1, pp 371–376 | Cite as

Laser-induced forward transfer of single-walled carbon nanotubes

  • A. Palla-PapavluEmail author
  • M. Dinescu
  • A. Wokaun
  • T. Lippert


The objective of this work is the application of laser-induced forward transfer (LIFT) for the fabrication of chemiresistor sensors. The receiver substrate is an array with metal electrodes and the active materials placed by LIFT are single-walled carbon nanotubes (SWCNT). The functionality of such sensors depends on the geometry of the active material onto the metallic electrodes. First the best geometry for the sensing materials and electrodes was determined, including the optimization of the process parameters for printing uniform pixels of SWCNT onto the sensor electrodes. The sensors were characterized in terms of their sensing characteristics, i.e., upon exposure to ammonia, proving the feasibility of LIFT.


Donor Substrate Laser Fluence Radial Breathing Mode Ammonia Vapor SWCNT Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the Scientific Exchange Programme between Switzerland and the New Member States of the European Union (Sciex-NMS), through the Rectors Conference of the Swiss Universities (CRUS) project ALECSA “Application of laser-induced forward transfer for the fabrication of a flexible carbon nanotube sensor array” is gratefully acknowledged.


  1. 1.
    M. Vrijheid, D. Martinez, S. Manzanares, P. Dadvand, A. Schembari, J. Rankin, M. Nieuwenhuijsen, Environ. Health Perspect. 119(5), 598–606 (2011)CrossRefGoogle Scholar
  2. 2.
    T. Mattle, A. Hintennach, T. Lippert, A. Wokaun, Appl. Phys. A 110, 309–316 (2013)CrossRefADSGoogle Scholar
  3. 3.
    Q. Cao, J.A. Rogers, Adv. Mater. 21, 29–53 (2009)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, S. Park, J.T.W. Yeow, A. Langner, F. Müller, Sens. Actuators B 149, 136–142 (2010)CrossRefGoogle Scholar
  5. 5.
    Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Science 305, 1273–1276 (2004)CrossRefADSGoogle Scholar
  6. 6.
    M.P. Garrett, I.N. Ivanov, R.A. Gerhardt, A.A. Puretzky, D.B. Geohegan, Appl. Phys. Lett. 97, 163105 (2010)CrossRefADSGoogle Scholar
  7. 7.
    J.R.H. Shaw-Stewart, T. Mattle, T.K. Lippert, M. Nagel, F.A. Nuesch, A. Wokaun, J. Appl. Phys. 113, 043104 (2013)CrossRefADSGoogle Scholar
  8. 8.
    M. Makrygianni, E. Verrelli, N. Boukos, S. Chatzandroulis, D. Tsoukalas, I. Zergioti, Appl. Phys. A 110, 559–563 (2013)CrossRefADSGoogle Scholar
  9. 9.
    L. Rapp, F. Serein-Spirau, J.-P. Lère-Porte, A.P. Alloncle, P. Delaporte, F. Fages, C. Videlot-Ackermann, Org. Electron 13, 2035–2041 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, Appl. Phys. A 110, 751–755 (2013)CrossRefADSGoogle Scholar
  11. 11.
    B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D.B. Chrisey, A. Szabó, A. Nógrádi, Tissue Eng. 11(11–12), 1817–1823 (2005)CrossRefGoogle Scholar
  12. 12.
    C. Unger, M. Gruene, L. Koch, J. Koch, B.N. Chichkov, Appl. Phys. A 103, 271–277 (2011)CrossRefADSGoogle Scholar
  13. 13.
    C.B. Arnold, P. Serra, A. Piqué, Mater. Res. Soc. Bull. 32, 23–31 (2007)CrossRefGoogle Scholar
  14. 14.
    P. Serra, M. Colina, J.M. Fernández-Pradas, L. Sevilla, J.L. Morenza, Appl. Phys. Lett. 85(9), 1639–1641 (2004)CrossRefADSGoogle Scholar
  15. 15.
    R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun, Appl. Phys. Lett. 91, 061103 (2007)CrossRefADSGoogle Scholar
  16. 16.
    S.K. Chang-Jian, J.R. Ho, J.-W.J. Cheng, C.K. Sung, Nanotechnology 17, 1184–1187 (2006)CrossRefADSGoogle Scholar
  17. 17.
    C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, I. Zergioti, Appl. Phys. Lett. 96, 041104 (2010)CrossRefADSGoogle Scholar
  18. 18.
    M. Nagel, R. Fardel, P. Feurer, M. Häberli, F.A. Nüesch, T. Lippert, A. Wokaun, Appl. Phys. A 92, 781–789 (2008)CrossRefADSGoogle Scholar
  19. 19.
    T. Lippert, Adv. Polym. Sci. 168, 51–246 (2004)CrossRefGoogle Scholar
  20. 20.
    T. Lippert, T. Dickinson, Chem. Rev. 103, 453–485 (2003)CrossRefGoogle Scholar
  21. 21.
    M.S. Brown, N.T. Kattamis, C.B. Arnold, J. Appl. Phys. 107, 083103 (2010)CrossRefADSGoogle Scholar
  22. 22.
    N.T. Kattamis, P.E. Purnick, R. Weiss, C.B. Arnold, Appl. Phys. Lett. 91, 171120 (2007)CrossRefADSGoogle Scholar
  23. 23.
    D. Cannatà, M. Benetti, F. Di Pietrantonio, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Lippert, Sens. Actuators B 173, 32–39 (2012)CrossRefGoogle Scholar
  24. 24.
    F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, T. Lippert, Sens. Actuators B 174, 158–167 (2012)CrossRefGoogle Scholar
  25. 25.
    A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, M. Dinescu, J. Opt. 12, 124014 (2010)CrossRefADSGoogle Scholar
  26. 26.
    A. Palla-Papavlu, V. Dinca, M. Dinescu, F. Di Pietrantonio, D. Cannatà, M. Benetti, E. Verona, Appl. Phys. A 105, 651–659 (2011)CrossRefADSGoogle Scholar
  27. 27.
    H. Chen, M.R. Golder, F. Wang, R. Jasti, A.K. Swan, Carbon 67, 203–213 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Palla-Papavlu
    • 1
    • 2
    Email author
  • M. Dinescu
    • 2
  • A. Wokaun
    • 1
  • T. Lippert
    • 1
  1. 1.General Energy Research DepartmentPaul Scherrer Institute, PSIVilligenSwitzerland
  2. 2.National Institute for Lasers, Plasma and Radiation PhysicsBucharestRomania

Personalised recommendations