Applied Physics A

, Volume 116, Issue 3, pp 893–900 | Cite as

Metal–polymer nano-composite films with ordered vertically aligned metal cylinders for sub-wavelength imaging

Article

Abstract

We propose a self-assembled and anisotropically metal loaded large area PS-b-P4VP diblock copolymer film as a medium with hyperbolic dispersion for application in superlensing and nanolithography. We obtained domain sizes from 30 to 100 nm with successful demonstration of metal loading inside the nano-templates. The separation between the individual nanorods and their radius was effectively controlled by varying the molecular weights and compositions of the polymers. We apply Maxwell–Garnett homogenization and FDTD simulations to show the sub-wavelength imaging and lithography potential of these hyperbolic metamaterials (HMMs). A proof of principle nanolithography result demonstrates sub-wavelength imaging and lithography using the proposed HMMs.

Keywords

Nanocomposite Film Diblock Copolymer FDTD Simulation Free Space Wavelength Anisotropically Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge the financial support by the metamaterials program: superlens (092 154 0099) funded by Agency for Science, Technology and Research of Singapore (A*Star).

References

  1. 1.
    R.A. Shelby, D.R. Smith, S. Schultz, Science. 292, 77 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    G. Dolling, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Lett. 32, 53–55 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    V.A. Podolskiy, E.E. Narimanov, Opt. Lett. 30, 75 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    J.B. Pendry, D. Schurig, D.R. Smith, Science. 312(5781), 1780–1782 (2006)ADSMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    C. Caloz, T. Itoh, Electromagnetic. Metamaterial. (IEEE Press, Wiley, Hoboken NJ, 2006)Google Scholar
  6. 6.
    E.E. Narimanov, A.V. Kildishev, Appl. Phys. Lett. 95(4), 041106 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    C. Caloz, T. Itoh, Electromagnetic. Metamaterial. (IEEE Press, Wiley, Hoboken NJ, 2006)Google Scholar
  8. 8.
    J.B. Pendry, Phys. Rev. Lett. 85(18), 3966–3969 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    N.X. Fang, H. Lee, C. Sun, X. Zhang, Science. 308, 534–537 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    P. Chaturvedi, W. Wu, V.J. Logeeswaran, Z. Yu, M.S. Islam, S.Y. Wang, R.S. Williams, N.X. Fang, Appl. Phys. Lett. 96, 043102 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    L. Hong, B. Wang, L. Ke, J. Ding, C.C. Chum, S.L. Teo, L. Shen, S.A. Maier, J.H. Teng, Nano. Lett. 12(3), 1549–1554 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    L. Hong, B. Wang, L. Ke, J. Ding, C.C. Chum, S.L. Teo, L. Shen, S.A. Maier, J.H. Teng, Adv. Func. Mat. 22(18), 3777–3783 (2012)CrossRefGoogle Scholar
  13. 13.
    F.V. Bunkin, Sov. Phys. JETP. 5, 277–283 (1957)MathSciNetGoogle Scholar
  14. 14.
    P. Clemmow, Proc. IEE. 110, 101–106 (1963)Google Scholar
  15. 15.
    D.R. Smith, D. Schurig, Phys. Rev. Lett. 90, 077405 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    B.D.F. Casse, W.T. Lu, Y.J. Huang, E. Gultepe, L. Menon, S. Sridhar, Appl. Phys. Lett. 96, 023114 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    R. Wangberg, J. Elser, E.E. Narimanov, V.A. Podolskiy, J. Opt. Soc. Am. B. 23, 498 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Liu, G. Bartal, X. Zhang, Opt. Express. 16, 15439 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    S. Ishii et al, Laser Photonics Rev. 7(2), 265–271 (2013)Google Scholar
  20. 20.
    Z. Jacob, L.V. Alekseyev, E. Narimanov, Opt. Express. 14, 8247–8256 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    A. Salandrino, N. Engheta, Phys. Rev. B 74, 075103 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Jacob, I.I. Smolyaninov, E.E. Narimanov, Appl. Phys. Lett. 100, 181105 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    P.A. Mistark, S. Park, S.E. Yalcin, D.H. Lee, O. Yavuzcetin, M.T. Tuominen, T.P. Russell, M. Achermann, ACS. Nano. 3(12), 3987–3992 (2009)CrossRefGoogle Scholar
  24. 24.
    S. Park, B. Kim, O. Yavuzcetin, M.T. Tuominen, T.P. Russell, ACS. Nano. 2(7), 1363–1370 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Park, J. Wang, B. Kim, W. Chen, T.P. Russell, Macromolecules. 40, 9059–9063 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    F.S. Bates, G.H. Fredrickson, Phys. Today. 52(2), 32–38 (1999)Google Scholar
  27. 27.
    A. Fahmi, T. Pietsch, C. Mendoza, N. Cheval, Mater. Today. 12, 44–50 (2009)CrossRefGoogle Scholar
  28. 28.
    L. Song, Y.M. Lam, Nanotechnology. 18(7), 075304 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    B.H. Kim, D.O. Shin, S. Jeong, C.M. Koo, S.C. Jeon, W.H. Hwang, S. Lee, M.G. Lee, S.O. Kim, Adv. Mater. 20, 2303–2307 (2008)CrossRefGoogle Scholar
  30. 30.
    B.H. Kim, J.Y. Kim, S. Jeong, J.O. Hwang, D.H. Lee, D.O. Shin, S. Choi, S.O. Kim, ACS. Nano. 4(9), 5464–5470 (2010)CrossRefGoogle Scholar
  31. 31.
    S.O. Kim, H.H. Solak, M.P. Stoykovich, N.J. Ferrier, J.J. De Pablo, P.F. Nealey, Nature. 424, 411–414 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    J. Bang, U. Jeong, D.Y. Ryu, T.P. Russell, C.J. Hawker, Adv. Mater. 21, 4769–4792 (2009)CrossRefGoogle Scholar
  33. 33.
    J. Elser, V.A. Podolskiy, I. Salakhutdinov, E.E. Narimanov, Appl. Phys. Lett. 89, 261102 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    A. Sihvola, Electromagnetic Mixing Formulas and Applications, Institute of Electrical Engineers (1999)Google Scholar
  35. 35.
    C.A. Foss, G.L. Hornyak, J.A. Stockert, C.R. Martin, J. Phys. Chem. 98, 2963–2971 (1994)Google Scholar
  36. 36.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370–4379 (1972)ADSCrossRefGoogle Scholar
  37. 37.
    I.H. Malitson, J. Opt. Soc. Am. 55, 1205–1208 (1965)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Singapore Institute of Manufacturing TechnologySingaporeSingapore
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations