Advertisement

Applied Physics A

, Volume 115, Issue 3, pp 771–779 | Cite as

Photoelectron spectroscopy of size-selected cluster ions using synchrotron radiation

  • Thomas Schramm
  • Gerd Ganteför
  • Andras Bodi
  • Partick Hemberger
  • Thomas Gerber
  • Bernd von Issendorff
Article

Abstract

A new experimental setup for photoelectron spectroscopy of size-selected cluster ions using synchrotron VUV radiation as generated by the Swiss Light Source is presented. An intense positively charged cluster ion beam is produced in a high-intensity magnetron sputter source. The clusters are subsequently mass selected in a sector magnet. To maximize the residence time of the cluster ions in the ionization region of the velocity map imaging spectrometer, the cluster ion beam is decelerated where it crosses the light beam. First experiments on (MoO3) n + (n = 69 and 59) cluster cations show that the approach is capable of delivering photoelectron spectra of size-selected transition metal cluster ions.

Keywords

MoO3 Photoelectron Spectrum Photon Beam Free Electron Laser Ultraviolet Photoelectron Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The support by German Research Foundation (DFG Grant No. GA 389/22-1) is gratefully acknowledged. The photoionization experiments were carried out at the VUV beamline of the Swiss Light Source, Paul Scherrer Institute. A.B., P.H., and T.G. acknowledge funding by the Swiss Federal Office for Energy (BFE Contract Number 101969/152433).

References

  1. 1.
    S. Hüfner, Photoelectron Spectroscopy (Springer, 2003)Google Scholar
  2. 2.
    R.L. Johnston, Atomic and Molecular Clusters (Taylor and Francis, 2002)Google Scholar
  3. 3.
    C. Zhang, T. Andersson, O. Björneholm, X. Xiaojun, M. Tchaplyguine, Z. Liu, J. Phys. Chem. C 117, 14390 (2013)CrossRefGoogle Scholar
  4. 4.
    L. Partanen, M.-H. Mikkelä, M. Huttula, M. Tchaplyguine, C. Zhang, T. Andersson, O. Björneholm, J. Chem. Phys. 138, 044301 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    W. Xiong, D.D. Hickstein, K.J. Schnitzenbaumer, J.L. Ellis, B.B. Palm, K.E. Keister, C. Ding, L. Miaja-Avila, G. Dukovic, J.L. Jimenez, M.M. Murnane, H.C. Kapteyn, Nano Lett. 13, 2924–2930 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    U. Landman, B. Yoon, C. Zhang, U. Heiz, M. Arenz, Top. Catal. 44, 145 (2007)CrossRefGoogle Scholar
  7. 7.
    C. Nitsch, C.P. Schulz, A. Gerber, W. Zimmermann-Edling, I.V. Hertel, Z. Phys. D 22, 651–658 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    V. Stert, W. Radloff, Th Freudenberg, F. Noack, I.V. Hertel, C. Jouvet, C. Dedonder-Lardeux, D. Solgadi, Europhys. Lett. 40(5), 515–520 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    L. Cordis, G. Ganteför, J. Hesslich, A. Ding, Z. Phys. D 3, 323–327 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    J. Ho, K.M. Ervin, W.C. Lineberger, J. Chem. Phys. 93, 6987 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    S.H. Young, C.L. Pettiette, J. Conceicao, O. Cheshnovsky, R.E. Smalley, Chem. Phys. Lett. 139, 233 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    G. Ganteför, K.H. Meiwes-Broer, H.O. Lutz, Phys. Rev. A 37, 2716–2718 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    J.V. Coe, J.T. Snodgrass, C.B. Freidhoff, K.M. McHugh, K.H. Bowen, J. Chem. Phys. 83, 3169 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    M. Astruc Hoffmann, G. Wrigge, B. Issendorf, J. Müller, G. Ganteför, H. Haberland, Eur. Phys. J. D 16, 9 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    J. Li, X. Li, H.J. Zhai, L.-S. Wang, Science 299, 864 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    H.J. Zhai, X. Huang, T. Waters, X.B. Wang, R.A.J. O’Hair, A.G. Webb, L.S. Wang, J. Phys. Chem. A 109, 10512 (2005)CrossRefGoogle Scholar
  17. 17.
    M. Willis, M. Götz, A.K. Kandalam, G.F. Ganteför, P. Jena, Angew. Chem. Int. Ed. 49, 8966 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Yang, X.-B. Wang, X.-P. Xing, L.-S. Wang, J. Chem. Phys. 128, 201102 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    V. Senz, T. Fischer, P. Oelßner, J. Tiggesbäumker, J. Stanzel, C. Bostedt, H. Thomas, M. Schöffler, L. Foucar, M. Martins, J. Neville, M. Neeb, Th Möller, W. Wurth, E. Rühl, R. Dörner, H. Schmidt-Böcking, W. Eberhardt, G. Ganteför, R. Treusch, P. Radcliffe, K.-H. Meiwes-Broer, Phys. Rev. Lett. 102, 138303 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J. Bahn, P. Oelßner, M. Köther, C. Braun, V. Senz, S. Palutke, M. Martins, E. Rühl, G. Ganteför, T. Möller, B. von Issendorff, D. Bauer, J. Tiggesbäumker, K.-H. Meiwes-Broer, New J. Phys. 14, 075008 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M. Johnson, A. Bodi, L. Schulz, T. Gerber, Nucl Instr Methods Phys Res A 610, 597–603 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    L. Nahon, N. de Oliveira, G.A. Garcia, J.-F. Gil, B. Pilette, O. Marcouillé, B. Lagarde, F. Polack, J. Synchrotron Radiat. 19(4), 508 (2012)CrossRefGoogle Scholar
  23. 23.
    W. T. Silfvast, Laser fundamentals (Cambridge, 2004)Google Scholar
  24. 24.
    J.T. Lau, K. Hirsch, Ph. Klar, A. Langenberg, F. Lofink, R. Richter, J. Rittmann, M. Vogel, V. Zamudio-Bayer, T. Möller, B. von Issendorff, Phys. Rev. A 79, 053201 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    M. Vogel, C. Kasigkeit, K. Hirsch, A. Langenberg, J. Rittmann, V. Zamudio-Bayer, A. Kulesza, R. Mitri´c, T. Möller, B. von Issendorff, J.T. Lau, Phys. Rev. B 85, 195454 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    S. Peredkov, M. Neeb, W. Eberhardt, J. Meyer, M. Tombers, H. Kampschulte, G. Niedner-Schatteburg, Phys. Rev. Lett. 107, 233401 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, M. Al-Hada, Surf. Sci. 608, 129–134 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    A. Bodi, P. Hemberger, T. Gerber, B. Sztáray, Rev. Sci. Instrum. 83, 083105 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    H. Haberland, M. Mall, M. Moseler, Y. Qiang, Th Reiners, Y. Thurner, J. Vac. Sci. Technol. A 12, 2925 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    C. Bartels, C. Hock, J. Huwer, R. Kuhnen, J. Schwöbel, B. von Issendorff, Science 323, 1323 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    C. Bartels, Ph.D. thesis, University of Freiburg, 2008Google Scholar
  32. 32.
    J. Berkowitz, Photoabsorption, photoionization, and photoelectron spectroscopy, (Academic Press, 1979), p 384Google Scholar
  33. 33.
    V. Dribinski, A. Ossadtchi, V.A. Mandelshtam, H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    Thomas Gerber, Yuzhu Liu, Gregor Knopp, Patrick Hemberger, Andras Bodi, Peter Radi, Yaroslav Sych, Rev. Sci. Instrum. 84, 033101 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    F. Werfel, E. Minni, J. Phys. C 16, 6091 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    T.S. Sian, G.B. Reddy, Sol. Energy Mater. Sol. Cells 82, 375–386 (2004)CrossRefGoogle Scholar
  37. 37.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    G. Wrigge, M. Astruc Hoffmann, B. von Issendorff, H. Haberland, Eur. Phys. J. D 24, 23–26 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Schramm
    • 1
  • Gerd Ganteför
    • 1
  • Andras Bodi
    • 2
  • Partick Hemberger
    • 2
  • Thomas Gerber
    • 2
  • Bernd von Issendorff
    • 3
  1. 1.Department of PhysicsUniversity of KonstanzConstanceGermany
  2. 2.Molecular Dynamics GroupPaul Scherrer Institut, PSIVilligenSwitzerland
  3. 3.Physikalisches InstitutUniversität FreiburgFreiburgGermany

Personalised recommendations