Applied Physics A

, Volume 115, Issue 3, pp 713–719 | Cite as

Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting

Invited paper


We designed a high-efficiency dispersive mirror based on multi-layer dielectric meta-surfaces. By replacing the secondary mirror of a dome solar concentrator with this dispersive mirror, the solar concentrator can be converted into a spectrum-splitting photovoltaic system with higher energy harvesting efficiency and potentially lower cost. The meta-surfaces are consisted of high-index contrast gratings (HCG). The structures and parameters of the dispersive mirror (i.e. stacked HCG) are optimized based on finite-difference time-domain and rigorous coupled-wave analysis method. Our numerical study shows that the dispersive mirror can direct light with different wavelengths into different angles in the entire solar spectrum, maintaining very low energy loss. Our approach will not only improve the energy harvesting efficiency, but also lower the cost by using single junction cells instead of multi-layer tandem solar cells. Moreover, this approach has the minimal disruption to the existing solar concentrator infrastructures.


  1. 1.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Progr. Photovolta. Res. Appl. 20(1), 12 (2012)CrossRefGoogle Scholar
  2. 2.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32(3), 510 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, N. Karam, Appl. Phys. Lett. 90(18), 183516 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    T. Takamoto, T. Agui, A. Yoshida, K. Nakaido, H. Juso, K. Sasaki, K. Nakamora, H. Yamaguchi, T. Kodama, H. Washio, et al., in 35th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2010), 2010, pp. 000412–000417Google Scholar
  5. 5.
    M.A. Green, Mater. Sci. Eng. B 74(1), 118 (2000)CrossRefGoogle Scholar
  6. 6.
    A. Imenes, D. Mills, Solar Energy Mater. Solar Cells 84(1), 19 (2004)CrossRefGoogle Scholar
  7. 7.
    A. Bielawny, P. Miclea, A. Rhein, R. Wehrspohn, S. Van Riesen, S. Glunz, in SPIE, vol. 6197, 2006, p. 619704Google Scholar
  8. 8.
    M.A. Green, A. Ho-Baillie, Prog. Photovolta. Res. Appl. 18(1), 42 (2010)CrossRefGoogle Scholar
  9. 9.
    J.D. McCambridge, M.A. Steiner, B.L. Unger, K.A. Emery, E.L. Christensen, M.W. Wanlass, A.L. Gray, L. Takacs, R. Buelow, T.A. McCollum et al., Prog. Photovolta. Res. Appl. 19(3), 352 (2011)CrossRefGoogle Scholar
  10. 10.
    B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J.C. Goldschmidt, J. Benick, S.W. Glunz, A.W. Bett, F. Dimroth, Prog. Photovolta. Res. Appl. 19(1), 61 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Stefancich, A. Zayan, M. Chiesa, S. Rampino, D. Roncati, L. Kimerling, J. Michel, Opt. Express 20(8), 9004 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Science 334(6054), 333 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Science 335(6067), 427 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    C.F. Mateus, M.C. Huang, Y. Deng, A.R. Neureuther, C.J. Chang-Hasnain, IEEE Photonics Technol. Lett. 16(2), 518 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    V. Karagodsky, F.G. Sedgwick, C.J. Chang-Hasnain, Opt. Express 18(16), 16973 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    K. Ikeda, K. Takeuchi, K. Takayose, I.S. Chung, J. Mørk, H. Kawaguchi, Appl. Opt. 52(5), 1049 (2013)Google Scholar
  17. 17.
    V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, C.J. Chang-Hasnain, Opt. Express 18(2), 694 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    C.J. Chang-Hasnain, Semicond. Sci. Technol. 26(1), 014043 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    D. Fattal, J. Li, Z. Peng, M. Fiorentino, R.G. Beausoleil, Nat. Photonics 4(7), 466 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    F. Lu, F.G. Sedgwick, V. Karagodsky, C. Chase, C.J. Chang-Hasnain, Opt. Express 18(12), 12606 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    L. Carletti, R. Malureanu, J. Mørk, I.S. Chung, Opt. Express 19(23), 23567 (2011)Google Scholar
  22. 22.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, J. Vac. Sci. Technol. B 14(6), 4129 (1996)CrossRefGoogle Scholar
  23. 23.
    D. Rosenblatt, A. Sharon, A.A. Friesem, IEEE J. Quantum Electron. 33(11), 2038 (1997)Google Scholar
  24. 24.
    R. Magnusson, M. Shokooh-Saremi, Opt. Express 16(5), 3456 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    D.L. Brundrett, E.N. Glytsis, T.K. Gaylord, Opt. Lett. 23(9), 700 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    K.S. Yee, IEEE Trans. Antennas Propag. 14(3), 302 (1966)ADSCrossRefMATHGoogle Scholar
  27. 27.
    M. Moharam, T. Gaylord, JOSA 71(7), 811 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    S. Horne, G. Conley, J. Gordon, D. Fork, P. Meada, E. Schrader, T. Zimmermann, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, vol. 1 (IEEE, 2006), pp. 694–697Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Elecrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations