Advertisement

Applied Physics A

, Volume 116, Issue 4, pp 1833–1840 | Cite as

Structural and electrical characterization of BiFeO3–NaTaO3 multiferroic

  • Suchismita Mohanty
  • R. N. P. Choudhary
  • B. N. Parida
  • R. Padhee
Article

Abstract

Using a standard high-temperature solid-state reaction technique, polycrystalline samples of (Bi1−x , Na x ) (Fe1−x , Ta x ) O3 (x = 0.0, 0.5) were prepared. The formation of the desired materials was confirmed by X-ray diffraction. The surface texture of the prepared materials recorded by scanning electron microscope exhibits a uniform grain distribution with small voids suggesting the formation of high-density pellet samples. The impedance and dielectric properties of the materials were investigated as a function of temperature and frequency. The relative dielectric constant and loss tangent of BiFeO3 decrease on addition of NaTaO3 (x = 0.5). The effect of addition of NaTaO3 on grain and grain boundary contributions in the resistive and capacitive components of BiFeO3 was studied using complex impedance spectroscopy. The value of activation energy due to both grain and grain boundary of both the samples is nearly same. The nature of variation of dc conductivity confirms the Arrhenius behavior of the materials. Study of frequency dependence of ac conductivity suggests that the materials obey Jonscher’s universal power law and the presence of ionic conductivity.

Keywords

BiFeO3 Complex Impedance Constant Phase Element Mobile Charge Carrier Ferroelectric Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

Authors are thankful to Ms Samita Pattnayak for providing SEM image for pure BFO.

References

  1. 1.
    N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Electricpolarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    J. Dho, C.W. Leung, J.L. MacManus-Driscoll, M.G. Blamire, Epitaxial and oriented YMnO3 film growth by pulsed laser deposition. J. Cryst. Growth 267, 548–553 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, 180401–180404 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    W.M. Zhu, Z.G. Ye, Effects of chemical modification on the electrical properties of 0.67BiFeO30.33PbTiO3 ferroelectric ceramics. Ceram. Int. 30, 1435–1442 (2004)CrossRefGoogle Scholar
  5. 5.
    N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 3912 (2005)CrossRefGoogle Scholar
  6. 6.
    G.A. Smolenskii, I. Chupis, Ferroelectromagnets. Soviet Phys. Uspekhi 25, 475–493 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    P. Fischer et al., J. Phys. C Solid State Phys. 13, 1931 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    S.-W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)Google Scholar
  10. 10.
    J. Nogués, I. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    A.K. Pradhan et al., J. Appl. Phys. 97, 093903 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Y.P. Wang et al., Appl. Phys. Lett. 84, 1731 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    M.M. Kumar, V.R. Palkar, Appl. Phys. Lett. 76, 2764 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    P. Vousden, Acta Cryst. 4, 373 (1951)CrossRefGoogle Scholar
  15. 15.
    Z. Anwar, M.A. Khan, A. Mahmood, M. Asghar, I. Shakir, M. Shahid, I. Bibi, M.F. Warsi, J. Magn. Magn. Mater. 355, 169–172 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    M.F. Din, I. Ahmad, M. Ahmad, M.T. Farid, M.A. Iqbal, G. Murtaza, M.N. Akhtar, I. Shakir, M.F. Warsi, M.A. Khan, J. Alloy. Compd. 584, 646–651 (2014)CrossRefGoogle Scholar
  17. 17.
    B. Ahmad, A. Mahmood, M.N. Ashiq, M.A. Malana, M. Najam-Ul-Haq, M.F. Ehsan, M.F. Warsi, I. Shakir, J. Alloy. Compd. 590, 193–198 (2014)CrossRefGoogle Scholar
  18. 18.
    E.Wu, POWD: an Interactive Power Diffraction Data Interpretation And Indexing Program V21 School of Physical Sciences (Flinder University of South Australia, Bedford Park)Google Scholar
  19. 19.
    S. Mohanty, R.N.P. Choudharyn, R. Padhee, B.N. Parida, Ceram. Int. (2014). doi: 10.1016/j.ceramint.2014.01.114 Google Scholar
  20. 20.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  21. 21.
    P. Ganguli, S. Devi, A.K. Jha, K.L. Deori, Ferroelectrics 381, 111 (2009)CrossRefGoogle Scholar
  22. 22.
    R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    A. Agarwal, S. Sanghi, N. Ahlawat, J. Appl. Phys. 111, 113917 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    M. Kumar, K.L. Yadav, J. Appl. Phys. 100, 074111 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    S. Selvasekarapandian, M. Vijaykumar, Mater. Chem. Phys. 80, 29 (2003)Google Scholar
  26. 26.
    A.R. James, K. Srinivas, Mater. Res. Bull. 34, 1301 (1999)CrossRefGoogle Scholar
  27. 27.
    P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Phys. B 395, 98 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. Interfacial Electrochem. 58, 429 (1975)CrossRefGoogle Scholar
  29. 29.
    M.A.L. Nobre, S. Lanfredi, Catal. Today 78, 529 (2003)CrossRefGoogle Scholar
  30. 30.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5557 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    A.R. James, S. Priya, K. Uchino, K. Srinivas, J. Appl. Phys. 90, 3504 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    S. Lanfredi, J.F. Carvalho, A.C. Hernandes, J. Appl. Phys. 88, 283 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    A.R. West, D.C. Sinclair, N. Hirose, J. Electroceram. 1, 65 (1997)CrossRefGoogle Scholar
  35. 35.
    J.R. Macdonaled, Solid State Ion. 13, 147 (1984)ADSCrossRefGoogle Scholar
  36. 36.
    O. Raymond, R. Font, N. Suaerz-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97, 084108 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    J.R. Macdonaled, Impedance Spectroscopy, Emphasizing Solid Materials and Systems (Wiley, New York, 1987)Google Scholar
  38. 38.
    M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 98, 084101 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid State Ion. 179, 689 (2008)CrossRefGoogle Scholar
  40. 40.
    A.K. Jonscher, Nature 267, 673 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Technical Education and ResearchSiksha ‘O’ Anusandhan UniversityBhubaneswarIndia

Personalised recommendations