Advertisement

Applied Physics A

, Volume 116, Issue 2, pp 671–681 | Cite as

Precise selective scribing of thin-film solar cells by a picosecond laser

  • Xin Zhao
  • Yunfeng Cao
  • Qiong Nian
  • Yung C. ShinEmail author
  • Gary Cheng
Article

Abstract

In this paper, precise scribing of thin-film solar cells (CIGS/Mo/Glass) via a picosecond laser is investigated. A parametric study is carried out for P1 and P2 scribing to study the effects of laser fluence and overlap ratio on scribing quality and ablation depth. Three ablation regimes are observed for P1 scribing in different laser fluence ranges, due to the involvement of different ablation mechanisms. The optimum scribing conditions are determined for both P1 and P2 scribing, and the potential processing speed is significantly increased. The heat accumulation effect at different repetition rates is studied to extrapolate the results from low to high repetition rates. A two-temperature model-based model is developed to simulate the scribing process for multiple thin films, providing decent prediction of the slot depth for both P1 and P2 scribing.

Keywords

Repetition Rate Laser Fluence High Repetition Rate Ablation Depth Ablation Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to gratefully acknowledge the financial support provided for this study by the National Science Foundation (Grant Nos.: CMMI-1030786, 0853890-CBET).

References

  1. 1.
    Y. Hamakawa (ed.), Thin-Film Solar Cells: Next Generation Photovoltaics and its Applications (Springer, Berlin Heidelberg, 2004)Google Scholar
  2. 2.
    R.R. Gay, Status and prospects for CIS-based photovoltaics. Sol. Energy Mater. Sol. Cells 47, 19–26 (1997)CrossRefGoogle Scholar
  3. 3.
    J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, P. Alloncle, Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers. J. Phys. D Appl. Phys. 39, 453–460 (2006)CrossRefADSGoogle Scholar
  4. 4.
    J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, T. Itina, Selective ablation of thin films with short and ultrashort laser pulses. Appl. Surf. Sci. 252(13), 4814–4818 (2006)CrossRefADSGoogle Scholar
  5. 5.
    S. Zoppel, H. Huber, G.A. Reider, Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells. Appl. Phys. A 89, 161–163 (2007)CrossRefADSGoogle Scholar
  6. 6.
    H.P. Huber, F. Herrnberger, S. Kery, S. Zoppel, Selective structuring of thin-film solar cells by ultrafast laser ablation. Proc. SPIE 6881, 688117 (2008)CrossRefGoogle Scholar
  7. 7.
    G. Račiukaitis, P. Gečys, Picosecond-laser structuring of thin films for CIGS solar cells. J. Laser Micro. Nanoeng. 5(1), 10–15 (2010)CrossRefGoogle Scholar
  8. 8.
    T. Kim, H. Pahk, H.K. Park, D.J. Hwang, C.P. Grigoropoulos, Comparison of multilayer laser scribing of thin film solar cells with femto, pico and nanosecond pulse durations. Proc. SPIE 7409, 74090A (2009)CrossRefGoogle Scholar
  9. 9.
    A. Wehrmann, H. Schulte-Huxel, M. Ehrhardt, D. Ruthe, K. Zimmer, A. Braun, S. Ragnow, Change of electrical properties of CIGS thin-film solar cells after structuring with ultrashort laser pulses. Proc. SPIE 7921, 79210T (2011)CrossRefADSGoogle Scholar
  10. 10.
    P. Gečys, G. Račiukaitis, M. Gedvilas, A. Braun, S. Ragnow, Scribing of thin-film solar cells with picosecond laser pulses. Phys. Procedia 12, 141–148 (2011)CrossRefADSGoogle Scholar
  11. 11.
    P. Gečys, G. Račiukaitis, A. Wehrmann, K. Zimmer, A. Braun, S. Ragnow, Scribing of thin-film solar cells with picosecond and femtosecond lasers. J. Laser Micro. Nanoeng. 7(1), 33–37 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Burn, V. Romano, M. Muralt, R. Witte, B. Frei, S. Bücheler, S. Nishiwaki, Selective ablation of thin films in latest generation CIGS solar cells with picosecond pulses. Proc. SPIE 8243, 824318 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Lauzurica, J.J. García-Ballesteros, M. Colina, I. Sánchez-Aniorte, C. Molpeceres, Selective ablation with UV lasers of a-Si: H thin film solar cells in direct scribing configuration. Appl. Surf. Sci. 257, 5230–5236 (2011)CrossRefADSGoogle Scholar
  14. 14.
    W. Hu, Y.C. Shin, G.B. King, Micromachining of metals, alloys, and ceramics by picosecond laser ablation, the ASME. J. Manuf. Sci. Eng. 132, 011009–011015 (2010)CrossRefGoogle Scholar
  15. 15.
    F. Dausinger, H. Hügel, V. Konov, Micro-machining with ultrashort laser pulses: from basic understanding to technical applications. Proc. SPIE 5147, 106–115 (2003)CrossRefADSGoogle Scholar
  16. 16.
    J. Bovatsek, A. Tamhankar, R. Patel, N.M. Bulgakova, J. Bonse, Effects of pulse duration on the ns-laser pulse induced removal of thin film materials used in photovoltaics. Proc. SPIE 7201, 720116 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Haas, G. Schöpe, C. Zahren, H. Stiebig, Analysis of the laser ablation processes for thin-film silicon solar cells. Appl. Phys. A 92, 755–759 (2008)CrossRefADSGoogle Scholar
  18. 18.
    Y.P. Meshcheryakov, N.M. Bulgakova, Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation. Appl. Phys. A 82, 363–368 (2006)CrossRefADSGoogle Scholar
  19. 19.
    W. Hu, Y.C. Shin, G.B. King, Modeling of multi-burst mode pico-second laser ablation for improved material removal rate. Appl. Phys. A 98, 407–415 (2010)CrossRefADSGoogle Scholar
  20. 20.
    G. Račiukaitis, P. Gečys, M. Gedvilas, K. Regelskis, B. Voisiat, Selective ablation of thin films with picosecond pulsed lasers for solar cells. AIP Conf. Proc. 1278, 800–811 (2010)CrossRefADSGoogle Scholar
  21. 21.
    D.R. Lide, Handbook of Chemistry and Physics, 74th edn. (CRC Press, FL, 1993)Google Scholar
  22. 22.
    E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, NY, 1998) (now Elsevier)Google Scholar
  23. 23.
    S. De Unamuno, E. Fogarassy, A thermal description of the melting of c- and a-silicon under pulsed eximer lasers. Appl. Surf. Sci. 36, 1–11 (1989)CrossRefADSGoogle Scholar
  24. 24.
    R. An, Y. Li, Y. Dou, Y. Fang, H. Yang, Q. Gong, Laser micro-hole drilling of soda-lime glass with femtosecond pulses. Chin. Phys. Lett. 21, 2465–2468 (2004)CrossRefADSGoogle Scholar
  25. 25.
    T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals. ASME J. Heat Transf. 115, 835–841 (1993)CrossRefGoogle Scholar
  26. 26.
    B. Wu, Y.C. Shin, A simple model for high fluence ultra-short pulsed laser metal ablation. Appl. Surf. Sci. 247, 4079–4084 (2007)CrossRefADSGoogle Scholar
  27. 27.
    B. Wu, Y.C. Shin, A simplified predictive model for high-fluence ultra-short pulsed laser ablation of semiconductors and dielectrics. Appl. Surf. Sci. 255, 4996–5002 (2009)CrossRefADSGoogle Scholar
  28. 28.
    R.M. More, K.H. Warren, D.A. Young, G.B. Zimmerman, A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 3059–3078 (1988)CrossRefzbMATHADSGoogle Scholar
  29. 29.
    B. Wu, Y.C. Shin, H. Pakhal, N.M. Laurendeau, R.P. Lucht, Modeling and experimental verification of plasmas induced by high-power nanosecond laser–aluminum interactions in air. Phys. Rev. E 76, 026405 (2007)CrossRefADSGoogle Scholar
  30. 30.
    X. Zhao, Y.C. Shin, A two-dimensional comprehensive hydrodynamic model for femtosecond laser pulse interaction with metals. J. Phys. D Appl. Phys. 45, 105201 (2012)CrossRefADSGoogle Scholar
  31. 31.
    F.L. Pedrotti, L.S. Pedrotti, Introduction to Optics (Prentice Hall, Englewood Cliffs, NJ, 1993)Google Scholar
  32. 32.
    V.L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Gordon and Breach, New York, 1962)Google Scholar
  33. 33.
    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, E.E.B. Campbell, A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion. Appl. Phys. A 81, 345–356 (2005)CrossRefADSGoogle Scholar
  34. 34.
    D.Y. Lee, M.S. Kim, L. Larina, B.T. Ahn, Effect of Cu content on the photovoltaic properties of Cu(In, Ga)Se2 solar cells prepared by the evaporation of binary selenide sources. Electron. Mater. Lett. 4(1), 13–18 (2008)Google Scholar
  35. 35.
    S.S. Mao, X. Mao, R. Greif, R.E. Russo, Simulation of infrared picosecond laser-induced electron emission from semiconductors. Appl. Surf. Sci. 127, 206–211 (1998)CrossRefADSGoogle Scholar
  36. 36.
    H.M. Van Driel, Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses. Phys. Rev. B 35, 8166–8176 (1987)CrossRefADSGoogle Scholar
  37. 37.
    Z. Tóth, B. Hopp, T. Szörényi, Z. Bor, E.A. Shakhno, V.P. Veiko, Pulsed laser ablation mechanisms of thin metal films. Proc. SPIE 3822, 18–26 (1999)Google Scholar
  38. 38.
    S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B 14, 2716 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xin Zhao
    • 1
    • 2
  • Yunfeng Cao
    • 1
    • 2
  • Qiong Nian
    • 1
    • 3
  • Yung C. Shin
    • 1
    • 2
    Email author
  • Gary Cheng
    • 1
    • 3
  1. 1.Center for Laser-based ManufacturingPurdue UniversityWest LafayetteUSA
  2. 2.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.School of Industrial EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations