Applied Physics A

, Volume 116, Issue 4, pp 1757–1760 | Cite as

Enhanced performance of InGaN light-emitting diodes with InGaN and composition-graded InGaN interlayers

  • Yu-Jue Yang
  • Yi-Ping Zeng


The effects of InGaN light-emitting diodes (LEDs) with InGaN and composition-graded InGaN interlayers in the space of multiple quantum wells and electron blocking layer are studied numerically. The electrostatic field, energy band diagrams, carrier concentrations, light–current–voltage performances, and internal quantum efficiency (IQE) are investigated. Simulation results show that the light output power and IQE are both largely improved over the conventional LED structure due to the improvement in hole injection efficiency and electron blocking capability, especially for the LED with composition-graded InGaN interlayer.


Barrier Height Internal Quantum Efficiency Energy Band Diagram Potential Barrier Height Electron Blocking Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by 973 Program (No. 2011CB301901-5).


  1. 1.
    S. Pimputkar, J. Speck, S.P. DenBaars, S. Nakamura, Nat. Photonics 3, 180 (2009)ADSGoogle Scholar
  2. 2.
    J.M. Phillips, M.E. Coltrin, M.H. Crawford, A.J. Fischer, M.R. Krames, R. Mueller-Mach, G.O. Mueller, Y. Ohno, L.E.S. Rohwer, J.A. Simmons, J.Y. Tsao, Laser Photon. Rev. 1, 307 (2007)Google Scholar
  3. 3.
    E.F. Schubert, J.K. Kim, Science 308, 1274 (2005)ADSGoogle Scholar
  4. 4.
    R. Charash, P.P. Maaskant, L. Lewis, C. McAleese, M.J. Kappers, C.J. Humphreys, B. Corbett, Appl. Phys. Lett. 95, 151103 (2009)ADSGoogle Scholar
  5. 5.
    J. Xie, X. Ni, Q. Fan, R. Shimada, U. Ozgur, H. Morkoc, Appl. Phys. Lett. 93, 121107 (2008)ADSGoogle Scholar
  6. 6.
    S.H. Yen, M.C. Tsai, M.L. Tsai, Y.J. Shen, T.C. Hsu, Y.K. Kuo, IEEE Photon. Technol. Lett. 21, 975 (2009)ADSGoogle Scholar
  7. 7.
    S.H. Han, D.Y. Lee, S.J. Lee, C.Y. Cho, M.K. Kwon, S.P. Lee, D.Y. Noh, D.J. Kim, Y.C. Kim, S.J. Park, Appl. Phys. Lett. 94, 231123 (2009)ADSGoogle Scholar
  8. 8.
    M.F. Schubert, J. Xu, J.K. Kim, E.F. Schubert, M.H. Kim, S. Yoon, S.M. Lee, C. Sone, T. Sakong, Y. Park, Appl. Phys. Lett. 93, 041102 (2008)ADSGoogle Scholar
  9. 9.
    Y.-K. Fu, R.-H. Jiang, Y.-H. Lu, B.-C. Chen, R. Xuan, Y.-H. Fang, C.-F. Lin, Y.-K. Su, J.-F. Chen, Appl. Phys. Lett. 98, 121115 (2011)ADSGoogle Scholar
  10. 10.
    X. Ni, Q. Fan, R. Shimada, Ü. Özgür, H. Morkoçb, Appl. Phys. Lett. 93, 171113 (2008)ADSGoogle Scholar
  11. 11.
    Y.L. Li, Y.R. Huang, Y.H. Lai, Appl. Phys. Lett. 91, 181113 (2007)ADSGoogle Scholar
  12. 12.
    W. Yang, D. Li, N. Liu, Z. Chen, L. Wang, L. Liu, L. Li, C. Wan, W. Chen, X. Hu, W. Du, Appl. Phys. Lett. 100, 031105 (2012)ADSGoogle Scholar
  13. 13.
    Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, Opt. Lett. 35, 3285 (2010)ADSGoogle Scholar
  14. 14.
    I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of Semiconductor Materials ScienceInstitute of Semiconductors, CASBeijingPeople’s Republic of China

Personalised recommendations