Applied Physics A

, Volume 116, Issue 3, pp 1477–1488 | Cite as

Piezoelectric La3Ga5.3Ta0.5Al0.2O14 crystal: growth, crystal structure perfection, piezoelectric, and acoustic properties

  • Dmitry RoshchupkinEmail author
  • Luc Ortega
  • Olga Plotitcyna
  • Dmitry Irzhak
  • Evgenii Emelin
  • Rashid Fahrtdinov
  • Vladimir Alenkov
  • Oleg Buzanov


A five-component crystal of lanthanum–gallium silicate group La3Ga5.3Ta0.5Al0.2O14 (LGTA) was grown by the Czochralski method. The LGTA crystal possesses unique thermal properties and substitution of Al for Ga in the unit cell leads to a substantial increase of electrical resistance at high temperatures. The unit cell parameters of LGTA were determined by powder diffraction. X-ray topography was used to study the crystal structure perfection: the growth banding normal to the growth axis were visualized. The independent piezoelectric constants d 11 and d 14 were measured by X-ray diffraction in the Bragg and Laue geometries. Excitation and propagation of surface acoustic waves were studied by the double-crystal X-ray diffraction at the BESSY II synchrotron radiation source. The analysis of the diffraction spectra of acoustically modulated crystals permitted the determination of the velocity of acoustic wave propagation and the power flow angles in different acoustic cuts of the LGTA crystal.


Surface Acoustic Wave Interplanar Spacing Growth Banding Bulk Acoustic Wave Crystal Structure Perfection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Ministry of Education and Sciences of Russian Federation (grant # 16.513.12.3027).


  1. 1.
    M.P. da Cunha, S.A. Fagundes, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1583 (1999)CrossRefGoogle Scholar
  2. 2.
    R.C. Smythe, R.C. Helmbold, G.E. Hague, K.A. Snow, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 355 (2000)CrossRefGoogle Scholar
  3. 3.
    H. Fritze, H.L. Tuller, Appl. Phys. Lett. 78, 976 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    N. Naumenko, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 530 (2001)CrossRefGoogle Scholar
  5. 5.
    D.V. Roshchupkin, D.V. Irzhak, R. Tucoulou, O.A. Buzanov, J. Appl. Phys. 94, 6692 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    D.V. Roshchupkin, H.D. Roshchupkina, D.V. Irzhak, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2081 (2005)CrossRefGoogle Scholar
  7. 7.
    D. Roshchupkin, D. Irzhak, A. Snigirev, I. Snigireva, L. Ortega, A. Sergeev, J. Appl. Phys. 110, 124902 (2011)ADSGoogle Scholar
  8. 8.
    D.V. Roshchupkin, A.I. Erko, L. Ortega, D.V. Irzhak, Appl. Phys. A 94, 477 (2009)ADSGoogle Scholar
  9. 9.
    S. Zhang, A. Yoshikawa, K. Kamada, E. Frantz, R. Xia, D.W. Snyder, T. Fukudo, T.R. Shrout, Solid State Commun. 148, 213 (2008)ADSGoogle Scholar
  10. 10.
    S. Zhang, Y. Zheng, H. Kong, J. Xin, E. Frantz, T.R. Shrout, J. Appl. Phys. 105, 114107 (2009)ADSGoogle Scholar
  11. 11.
    Chieko F, in Proceedings of Symposium on Ultrasonic Electronics, vol. 31 (2010), p 597Google Scholar
  12. 12.
    K. Masae, N. Martin, Y. Akira, Opt. Mater. 34, 1513 (2012)Google Scholar
  13. 13.
    H. Takeds, M. Kumatorya, T. Shiosaki, Appl. Phys. Lett. 79, 4201 (2001)ADSGoogle Scholar
  14. 14.
    M. Kumatorya, H. Sato, J. Nakanishi, T. Fujii, M. Kadota, Y. Sakabe, J. Crystal Growth 229, 289 (2001)ADSGoogle Scholar
  15. 15.
    R. Tucoulou, R. Pascal, M. Brunel, O. Mathon, D.V. Roshchupkin, I.A. Schelokov, E. Cattan, D. Remiens, J. Appl. Crystallogr. 33, 1019 (2000)Google Scholar
  16. 16.
    R. Tucoulou, F. de Bergevin, O. Mathon, D. Roshchupkin, Phys. Rev. B 64, 134108 (2001)ADSGoogle Scholar
  17. 17.
    W. Sauer, T.H. Metzger, A.G.C. Haubrich, S. Manus, A. Wixforth, J. Peisl, A. Mazuelasw, J. Härtwig, J. Baruchel, Appl. Phys. Lett. 75, 1709 (1999)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dmitry Roshchupkin
    • 1
    Email author
  • Luc Ortega
    • 2
  • Olga Plotitcyna
    • 1
  • Dmitry Irzhak
    • 1
  • Evgenii Emelin
    • 1
  • Rashid Fahrtdinov
    • 1
  • Vladimir Alenkov
    • 3
  • Oleg Buzanov
    • 3
  1. 1.Institute of Microelectronics Technology and High-Purity Materials Russian Academy of SciencesChernogolovkaRussia
  2. 2.Laboratoire de Physique des SolidesUniv. Paris-Sud, CNRS, UMR 8502Orsay CedexFrance
  3. 3.FOMOS Materials Co.MoscowRussia

Personalised recommendations