Advertisement

Applied Physics A

, Volume 117, Issue 1, pp 295–300 | Cite as

Laser-induced periodic surface structures on polymers for formation of gold nanowires and activation of human cells

  • R.-A. Barb
  • C. Hrelescu
  • L. Dong
  • J. Heitz
  • J. Siegel
  • P. Slepicka
  • V. Vosmanska
  • V. Svorcik
  • B. Magnus
  • R. Marksteiner
  • M. Schernthaner
  • K. Groschner
Article

Abstract

Frequently observed coherent structures in laser-surface processing are ripples, also denoted as laser-induced periodic surface structures (LIPSS). For polyethylene terephthalate (PET) and polystyrene (PS), LIPSS can be induced by irradiation with linearly polarized ns-pulsed UV laser light. Under an angle of incidence of θ, their lateral period is close to the laser wavelength λ divided by (n eff − sinθ). Here, n eff is the effective refractive index which is 1.32 and 1.23 for PET and PS, respectively. We describe potential applications of LIPSS for alignment and activation of human cells cultivated on polymer substrates, as well as for formation of separated gold nanowires which show pronounced surface plasmon resonances, e.g., at 775 nm for PET.

Keywords

Surface Plasmon Resonance Localize Surface Plasmon Resonance Surface Plasmon Resonance Sensor Gold Nanowires Ripple Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The support by the Austrian Research Promotion Agency FFG by project 838955 CellStretch (J. H., R.-A. B., B. M., R. M.) and the support by the Grant Agency of the CR under the project 13-06609S (P. S., V.S.) are gratefully acknowledged. We also want to thank H. Piglmayer-Brezina for gold deposition and SEM characterization.

References

  1. 1.
    D. Bäuerle, Laser processing and chemistry (Springer, Berlin Heidelberg, 2011)CrossRefGoogle Scholar
  2. 2.
    M. Birnbaum, J. Appl. Phys. 36, 3688 (1965)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    J. Bonse, A. Rosenfeld, J. Krüger, Appl. Surf. Sci. 257, 5420 (2011)CrossRefADSGoogle Scholar
  4. 4.
    M. Forster, W. Kautek, N. Faure, E. Audouard, R. Stoian, Phys. Chem. Chem. Phys. 13, 4155 (2011)CrossRefGoogle Scholar
  5. 5.
    O. Varlamova, M. Bounhalli, J. Reif, Appl. Surf. Sci. 278, 62 (2013)CrossRefADSGoogle Scholar
  6. 6.
    M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P.A. Loukakos, E. Stratakis, Opt. Express 21, 18501 (2013)CrossRefADSGoogle Scholar
  7. 7.
    D. Bäuerle, E. Arenholz, V. Svorcik, J. Heitz, B. Luk′yanchuk, N. Bityurin, Proc. SPIE 2403, 312 (1995)CrossRefADSGoogle Scholar
  8. 8.
    E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, Biomaterials 29, 1796 (2008)CrossRefGoogle Scholar
  9. 9.
    E. Rebollar, S. Perez, J.J. Hernandez, I. Martin-Fabiani, D.R. Rueda, T.A. Ezquerra, M. Castillejo, Langmuir 27, 5596 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Perez, E. Rebollar, M. Oujja, M. Martin, M. Castillejo, Appl. Phys. A 110, 683 (2013)CrossRefADSGoogle Scholar
  11. 11.
    B. Hopp, T. Smausz, B. Papdi, Z. Bor, A. Szabo, L. Kolozsvari, C. Fotakis, A. Nogradi, Appl. Phys. A 93, 45 (2008)CrossRefADSGoogle Scholar
  12. 12.
    M. Schernthaner, B. Reisinger, H. Wolinski, S.D. Kohlwein, A. Trantina-Yates, M. Fahrner, C. Romanin, H. Itani, D. Stifter, G. Leitinger, K. Groschner, J. Heitz, Acta Biomater. 8, 2953 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Siegel, J. Heitz, A. Reznickova, V. Svorcik, Appl. Surf. Sci. 264, 443 (2013)CrossRefADSGoogle Scholar
  14. 14.
    E.W. Ades, F.J. Candal, R.A. Swerlick, V.G. Gorge, S. Summers, D.V. Bosse, T.J. Lawley, J. Invest. Dermatol. 99, 683 (1992)CrossRefGoogle Scholar
  15. 15.
    B. Ding, C. Hrelescu, N. Arnold, G. Isic, T.A. Klar, Nano Lett. 13, 378 (2013)CrossRefADSGoogle Scholar
  16. 16.
    T. Inagaki, E.T. Arakawa, R.N. Hamm, M.W. Williams, Phys. Rev B 15, 3243 (1977)CrossRefADSGoogle Scholar
  17. 17.
    J. Heitz, B. Reisinger, M. Fahrner, C. Romanin, J. Siegel, V. Svorcik, Transparent optical networks (ICTON), 2012 14th international conference on, (2012), ISBN 978-1-4673-2229-4Google Scholar
  18. 18.
    M.T. Lam, S. Sim, X. Zhu, S. Takayama, Biomaterials 27, 4340 (2006)CrossRefGoogle Scholar
  19. 19.
    T.J. Harris, M. Peifer, Trends Cell Biol. 15, 234 (2005)CrossRefGoogle Scholar
  20. 20.
    M. Schernthaner, G. Leitinger, H. Wolinski, S.D. Kohlwein, B. Reisinger, R.A. Barb, W.F. Graier, J. Heitz, K. Groschner, J. Nanomater. 2013, 251063 (2013)CrossRefGoogle Scholar
  21. 21.
    G. Schider, J.R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, F.R. Aussenegg, J. Appl. Phys. 90, 3825 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R.-A. Barb
    • 1
  • C. Hrelescu
    • 1
  • L. Dong
    • 1
  • J. Heitz
    • 1
  • J. Siegel
    • 2
  • P. Slepicka
    • 2
  • V. Vosmanska
    • 2
  • V. Svorcik
    • 2
  • B. Magnus
    • 3
  • R. Marksteiner
    • 3
  • M. Schernthaner
    • 4
  • K. Groschner
    • 4
  1. 1.Institute of Applied PhysicsJohannes Kepler University LinzLinzAustria
  2. 2.Institute of Chemical TechnologyPragueCzech Republic
  3. 3.Innovacell Biotechnologie AGInnsbruckAustria
  4. 4.Institute of BiophysicsMedical University GrazGrazAustria

Personalised recommendations