Advertisement

Applied Physics A

, Volume 114, Issue 2, pp 367–372 | Cite as

Enhanced electrical and ferroelectric properties in a multiferroic (BiFeO3/Bi0.5Na0.5TiO3)3/LaNiO3 superlattices structure

  • X. Q. Cheng
  • J. MiaoEmail author
  • S. Z. Wu
  • F. Shao
  • L. Q. Guo
  • X. G. Xu
  • Y. Jiang
Rapid communication

Abstract

Artificial multiferroic superlattices (SL), consisting of BiFeO3 (16 nm)/Bi0.5Na0.5TiO3 (5 nm) (BFO/BNT SL), were grown on (001) SrTiO3 single crystal by pulsed laser deposition method. The cross-sectional, surface morphology, and crystallographic structure of BFO/BNT SL and BFO single layer were investigated. It was found that the electrical, ferroelectric, and magnetic properties of BFO/BNT SL exhibit a remarkably enhancement compared with BFO single layer. The influence of BNT buffering layer, lattice strain, and interfaces interplay of the SL structure are supposed to benefit their ferroelectric and ferromagnetic properties. Our works suggested the BFO/BNT SL with an improved multiferroic characteristics have a promising application for the future informational storage devices.

Keywords

BiFeO3 Bottom Electrode Leakage Current Density LaNiO3 Space Charge Limited Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by National Basic Research Program of China (No. 2012CB932702), Beijing Municipal Natural Science Foundation (No. 2122037), the NSFC (No.11174031), PCSIRT, and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    R. Ramesh, N.A. Spaldin, Nature Mater. 6, 21 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C 13, 1931 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    J. Zhang, D. Cui, H. Lu, Z. Chen, Y. Zhou, L. Li, G. Yang, S. Martin, P. Hess, Jpn. J. Appl. Phys. 76, 362 (1997)Google Scholar
  5. 5.
    T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Nature Mater. 5, 823 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    R.Y. Zheng, X.S. Gao, Z.H. Zhou, J. Wang, J. Appl. Phys. 101, 054104 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Y.H. Lee, C.S. Liang, J.M. Wu, Electrochem. Solid-State Lett. 8, F55 (2005)CrossRefGoogle Scholar
  8. 8.
    T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Appl. Phys. Lett. 94, 112904 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    J.K. Kim, S.S. Kim, W.J. Kim, A.S. Bhalla, J. Appl. Phys. 101, 014108 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    J.G. Wu, G.Q. Kang, H.J. Liu, J. Wang, Appl. Phys. Lett. 94, 172906 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    F.Z. Huang, X.M. Lu, W.W. Lin, W. Cai, X.M. Wu, Y. Kan, H. Sang, J.S. Zhu, Appl. Phys. Lett. 90, 252903 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    J.G. Wu, J. Wang, J. Appl. Phys. 105, 124107 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    S.O. Park, C.S. Huang, H. Cho, C.S. Kang, H. Kang, S.I. Lee, M.Y. Lee, Jpn. J. Appl. Phys. Part I 35, 1548 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K. Ozawa, Phys. Rev. B 77, 092101 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    H.M. Jang, S. Ryu, J.Y. Son, Y.H. Shin, J.F. Scott, Appl. Phys. Lett. 95, 242902 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State 2, 2651 (1961)Google Scholar
  18. 18.
    K.A. Razak, C.J. Yip, S. Sreekantan, J. Alloys Compd. 509, 2936 (2011)CrossRefGoogle Scholar
  19. 19.
    C. Xu, D. He, H. Wang, C. Liu, S. Yin, K. Wang, J. Guan, F. Peng, Z. Kou, J. Alloys Compd. 533, 9 (2012)CrossRefGoogle Scholar
  20. 20.
    R. Ranjith, R.V.K. Mangalam, P.H. Boullay, A. David, M.B. Lepetit, U.L. Uders, W. Prellier, A.D.A. Costa, A. Ferri, R. Desfeux, G. Vincze, Z. Radi, C. Aruta, Appl. Phys. Lett. 96, 022902 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    E. Bousquet, M. Dawber, N. Stucki et al., Nature 452, 732 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    N. Reyren, S. Thiel, A.D. Caviglia et al., Science 317, 1196 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    M.-H. Jo, N.D. Mathur, J.E. Evetts, M.G. Blamire, M. Bibes, J. Fontcuberta, Appl. Phys. Lett. 75, 3689 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    M.P. Singh, W. Prellier, L. Mechin, Ch. Simon, B. Raveau, J. Appl. Phys. 99, 024105 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    S.J. Chiu, Y.T. Liu, H.Y. Leeb, G.P. Yua, J.H. Huang, J. Crystal Growth 334, 90 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    M.S. Chen, T.B. Wu, J.M. Wu, Appl. Phys. Lett. 68, 1430 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    C. Guerrero, F. Sanchez, C. Ferrater, J. Roldan, M.V. Garcia, M. Varela, Appl. Surf. Sci. 168, 219 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    P. Chen, S.Y. Xu, W.Z. Zhou, C.K. Ong, D.F. Cui, J. Appl. Phys. 85, 3000 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    H.Y. Lee, H.J. Liu, Y.C. Liang, K.F. Wu, C.H. Lee, J. Electrochem. Soc. 156, G114 (2009)CrossRefGoogle Scholar
  30. 30.
    R. Ramesh, H. Gilchrist, T. Sands, J.M. Tarascon, V.G. Keramidas, Appl. Phys. Lett. 63, 3592 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    J.L. Xu, Z. Jia, N.W. Zhang, T.L. Ren, J. Appl. Phys. 111, 074101 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    H. Yang, H. Wang, G.F. Zou et al., Appl. Phys. Lett. 93, 142904 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Wang, C.W. Nan, J. Appl. Phys. 103, 024103 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    J.F. Scott, C.A. Araujo, B.M. Melnick, L.D. McMillan, R. Zuleeg, J. Appl. Phys. 70, 382 (1991)ADSCrossRefGoogle Scholar
  35. 35.
    R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, R. Ramesh et al., Science 326, 977 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    A.Z. Simoes, E.C. Aguiar, C.S. Riccardi, E. Longo, B. Mizaikoff, Mater. Chem. Phys. 124, 894 (2010)CrossRefGoogle Scholar
  37. 37.
    R.R. Das, D.M. Kim, S.H. Back, C.B. Eom, F. Zavaliche, S.Y. Yang, R. Ramesh et al., Appl. Phys. Lett. 88, 242904 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    R. Seshadri, N.A. Hill, Chem. Mater. 13, 2892 (2001)CrossRefGoogle Scholar
  39. 39.
    P. Yang, K.M. Kim, Y.-G. Joh, D.H. Kim, J.-Y. Lee, J. Zhu, H.Y. Lee, J. Appl. Phys. 105, 061618 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • X. Q. Cheng
    • 1
  • J. Miao
    • 1
    Email author
  • S. Z. Wu
    • 1
  • F. Shao
    • 1
  • L. Q. Guo
    • 2
  • X. G. Xu
    • 1
  • Y. Jiang
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Corrosion and Protection Center, Key Laboratory of Environmental Fracture (Ministry of Education)University of Science and Technology BeijingBeijingChina

Personalised recommendations