Applied Physics A

, Volume 114, Issue 3, pp 685–693 | Cite as

Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts

  • G. Poggi
  • N. Toccafondi
  • L. N. Melita
  • J. C. Knowles
  • L. Bozec
  • R. Giorgi
  • P. Baglioni


Alkaline earth metal hydroxide nanoparticles dispersions have demonstrated to be efficient for the preservation of cellulose-based artifacts, providing a stable neutral environment and, if in excess, turning into mild alkaline species. New formulations tailored for specific conservation issues have been recently obtained via a solvothermal reaction, starting from bulk metal, and short chain alcohols. Using this synthetic procedure, stable, and high concentrated calcium hydroxide nanoparticles dispersions can be obtained. The characterization of nanoparticles was carried out by dynamic light scattering, transmission electron microscopy and X-ray powder diffraction and showed that the dispersed systems are particularly suitable for the application on porous substrates. In a direct application of this technology, acidic paper and canvas samples were artificially aged after deacidification using calcium hydroxide nanoparticles dispersed in short chain alcohols. Cellulose viscosimetric polymerization degree (DPv), cellulose pyrolysis temperature, and samples’ pH were evaluated upon the aging and in terms of protective action arising from the applied treatment. In particular, determinations of DPv clearly showed that the degradation of acidic paper and canvas samples proceeds at higher rates with respect to deacidified samples. These evidences were also confirmed by the thermogravimetric analysis of samples, in which the benefits due to the deacidification treatments are measured in terms of pyrolysis temperature of cellulose. These new formulations of nanoparticles dispersions expand the palette of available tools for the conservation of cellulose-based works of art, such as easel paintings, and manuscripts, potentially opening the way for the intervention on parchment and leather, whose preservation is a particularly challenging task.


Dynamic Light Scattering Pyrolysis Temperature Artificial Aging Paper Sample Magnesium Hydroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Rachel Camerini and Laura Gozzini for their collaboration during the experimental tests on paper and canvas. This work was partly supported by CSGI, the Ministry for Education and Research (MIUR, PRIN-2009-P2WEAT), and the European Union, Project NANOFORART (FP7-ENV-NMP-2011/282816).


  1. 1.
    D. Fengel, G. Wegener, Wood: chemistry, ultrastructure, reactions (Walter De Gruyter, Berlin and New York, 1984), p. 613Google Scholar
  2. 2.
    J.F. Harris, Appl. Polym. Symp. 28, 131 (1975)Google Scholar
  3. 3.
    N.S. Banait, W.P. Jencks, J. Am. Chem. Soc. 113, 7951 (1991)CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, J. Bommuswamy, M.L. Sinnott, J. Am. Chem. Soc. 116, 7557 (1994)CrossRefGoogle Scholar
  5. 5.
    L.E. Lundgaard, W. Hansen, D. Linhjell, T.J. Painter, IEEE Trans. Power Deliv. 19, 230 (2004)CrossRefGoogle Scholar
  6. 6.
    R.S. Orr, L.C. Weiss, G.C. Humphreys, T. Mares, J.N. Grant, Text. Res. J. 24, 399 (1954)CrossRefGoogle Scholar
  7. 7.
    T. Iversen, Oxidative decomposition of the plysaccharide components of the paper, in ageing/degradation of paper. A literature survey (Stockholm, Sweden, 1989), pp. 43–47Google Scholar
  8. 8.
    C.J. Shanani, G. Harrison, in Works of art on paper: books, documents and photographs, edited by V. Daniels, A. Donnithorne, P. Smith (International Institute for Conservation of Historic and Artistic Works, London, 2002), pp. 189–192Google Scholar
  9. 9.
    A.M. Emsley, R.J. Heywood, M. Ali, C.M. Eley, Cellulose 4, 1 (1997)CrossRefGoogle Scholar
  10. 10.
    S. Zervos, A. Moropoulou, Cellulose 12, 485 (2005)CrossRefGoogle Scholar
  11. 11.
    P. Calvini, A. Gorassini, A.L. Merlani, Restaurator 28, 47 (2007)CrossRefGoogle Scholar
  12. 12.
    H.-Z. Ding, Z.D. Wang, Cellulose 15, 205 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    M.H. Gehlen, Cellulose 17, 245 (2010)CrossRefGoogle Scholar
  14. 14.
    P. Calvini, A. Gorassini, A.L. Merlani, Cellulose 15, 193 (2008)CrossRefGoogle Scholar
  15. 15.
    J. Wouters, Science 322, 1196 (2008)CrossRefGoogle Scholar
  16. 16.
    J.G. Neevel, C.T.J. Mensch, T.J. Cornelis, in ICOM Committee for Conservation Triennial Meeting, ed. by J. Bridgland (James and James, London, 1999), pp. 528–533Google Scholar
  17. 17.
    U. Henniges, R. Reibke, G. Banik, E. Huhsmann, U. Hähner, T. Prohaska, A. Potthast, Cellulose 15, 861 (2008)CrossRefGoogle Scholar
  18. 18.
    D. Hunter, Papermaking through Eighteen Centuries (W.E. Rudge, New York, 1930), p. 406Google Scholar
  19. 19.
    J. Tétreault, Airborne pollutants in museums, galleries and archives: risk assessment, control strategies and preservation management (Canadian Conservation Institute, Ottawa, 2003), p. 168Google Scholar
  20. 20.
    T. Grøntoft, M. Odlyha, P. Mottner, E. Dahlin, S. Lopez-Aparicio, S. Jakiela, M. Scharff, G. Andrade, M. Obarzanowski, M. Ryhl-Svendsen, D. Thickett, S. Hackney, J. Wadum, J. Cult. Herit. 11, 411 (2010)CrossRefGoogle Scholar
  21. 21.
    E. Carretti, M. Bonini, L. Dei, B.H. Berrie, L.V. Angelova, P. Baglioni, R.G. Weiss, Acc. Chem. Res. 43, 751 (2010)CrossRefGoogle Scholar
  22. 22.
    R. Giorgi, M. Baglioni, D. Berti, P. Baglioni, Acc. Chem. Res. 43, 695 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Baglioni, D. Chelazzi, R. Giorgi, G. Poggi, in Encyclopedia of surface and colloid science, ed. by P. Somasundaran, 2nd edn. (Taylor & Francis, New York, 2012), pp. 1–16Google Scholar
  24. 24.
    D. Chelazzi, G. Poggi, Y. Jaidar, N. Toccafondi, R. Giorgi, P. Baglioni, J. Colloid Interface Sci. 392, 42 (2013)CrossRefGoogle Scholar
  25. 25.
    R. Giorgi, L. Dei, M. Ceccato, C. Schettino, P. Baglioni, Langmuir 18, 8198 (2002)CrossRefGoogle Scholar
  26. 26.
    R. Giorgi, C. Bozzi, L. Dei, C. Gabbiani, B.W. Ninham, P. Baglioni, Langmuir 21, 8495 (2005)CrossRefGoogle Scholar
  27. 27.
    G. Poggi, R. Giorgi, N. Toccafondi, V. Katzur, P. Baglioni, Langmuir 26, 19084 (2010)CrossRefGoogle Scholar
  28. 28.
    G. Poggi, P. Baglioni, R. Giorgi, Restaurator 32, 247 (2011)CrossRefGoogle Scholar
  29. 29.
    R. Giorgi, D. Chelazzi, P. Baglioni, Langmuir 21, 10743 (2005)CrossRefGoogle Scholar
  30. 30.
    R. Giorgi, D. Chelazzi, P. Baglioni, Appl. Phys. A Mater. Sci. Process. 83, 567 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    P. Calvini, V. Grosso, M. Hey, L. Rossi, L. Santucci, Paper Conserv 12, 35 (1988)CrossRefGoogle Scholar
  32. 32.
    M. Strlič, J. Kolar, M. Zigon, B. Pihlar, J. Chromatogr. A 805, 93 (1998)CrossRefGoogle Scholar
  33. 33.
    L. Santucci, M.P. Zappalà, Restaurator 22, 51 (2001)CrossRefGoogle Scholar
  34. 34.
    N. Toccafondi, G. Poggi, D. Chelazzi, P. Canton, R. Giorgi, P. Baglioni, (2013) (in preparation)Google Scholar
  35. 35.
    S. Soares, G. Camino, S. Levchik, Polym. Degrad. Stab. 49, 275 (1995)CrossRefGoogle Scholar
  36. 36.
    E. Franceschi, D. Palazzi, E. Pedemonte, J. Therm. Anal. Calorim. 66, 349 (2001)CrossRefGoogle Scholar
  37. 37.
    I.C.A. Sandu, M. Brebu, C. Luca, I. Sandu, C. Vasile, Polym. Degrad. Stab. 80, 83 (2003)CrossRefGoogle Scholar
  38. 38.
    UNI 8282: cellulose in dilute solutions—determination of limiting viscosity number—method in cupri-ethylene-diamine (CED) solution (1994)—Equivalent to the ISO Standard 5351/1Google Scholar
  39. 39.
    A.-L. Dupont, G. Mortha, J. Chromatogr. A 1026, 129 (2004)CrossRefGoogle Scholar
  40. 40.
    C.H. Stephens, P.M. Whitmore, H.R. Morris, M.E. Bier, Biomacromolecules 9, 1093 (2008)CrossRefGoogle Scholar
  41. 41.
    S. Sequeira, C. Casanova, E.J. Cabrita, J. Cult. Herit. 7, 264 (2006)CrossRefGoogle Scholar
  42. 42.
    E. Stefanis, C. Panayiotou, Restaurator 28, 185 (2007)CrossRefGoogle Scholar
  43. 43.
    E. Stefanis, C. Panayiotou, Restaurator 29, 125 (2008)CrossRefGoogle Scholar
  44. 44.
    E. Stefanis, C. Panayiotou, Restaurator 31, 19 (2010)CrossRefGoogle Scholar
  45. 45.
    Y. Arai, The preparation of powder (Chapman and Hall, London, 1996)Google Scholar
  46. 46.
    M. Ambrosi, L. Dei, R. Giorgi, C. Neto, P. Baglioni, Langmuir 17, 4251 (2001)CrossRefGoogle Scholar
  47. 47.
    R. Jenkins, R.L. Snyder, Introduction to X-ray powder diffractometry (Wiley, New York, 1996)CrossRefGoogle Scholar
  48. 48.
    Portlandite XRD—RRUFF Database (ID: RO70210.1) (2013), Accessed 17 May 2013
  49. 49.
    A. Lattuati-Derieux, S. Bonnassies-Termes, B. Lavédrine, J. Chromatogr. A 1026, 9 (2004)CrossRefGoogle Scholar
  50. 50.
    H. Carter, P. Bégin, D. Grattan, Restaurator 21, (2000)Google Scholar
  51. 51.
    V. Bukovský, Restaurator 21, 55 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. Poggi
    • 1
  • N. Toccafondi
    • 1
  • L. N. Melita
    • 2
  • J. C. Knowles
    • 2
    • 3
  • L. Bozec
    • 2
  • R. Giorgi
    • 1
  • P. Baglioni
    • 1
  1. 1.Department of Chemistry and CSGIUniversity of FlorenceSesto FiorentinoItaly
  2. 2.Division of Biomaterials and Tissue Engineering, UCL Eastman Dental InstituteUniversity College LondonLondonUK
  3. 3.WCU Research Centre of Nanobiomedical ScienceDankook UniversityCheonan-siSouth Korea

Personalised recommendations