Applied Physics A

, Volume 116, Issue 1, pp 85–90 | Cite as

Electron propagation from a photo-excited surface: implications for time-resolved photoemission

  • S.-L. Yang
  • J. A. Sobota
  • P. S. Kirchmann
  • Z.-X. Shen


We perform time- and angle-resolved photoelectron spectroscopy on p-type GaAs(110). We observe an optically excited population in the conduction band, from which the time scales of intraband relaxation and surface photovoltage decay are both extracted. Moreover, the photovoltage shift of the valence band intriguingly persists for hundreds of picoseconds at negative delays. By comparing to a recent theoretical study, we reveal that the negative-delay dynamics reflects the interaction of the photoelectrons with a photovoltage-induced electric field outside the sample surface. We develop a conceptual framework to disentangle the intrinsic electron dynamics from this long-range field effect, which sets the foundation for understanding time-resolved photoemission experiments on a broad range of materials in which poor electronic screening leads to surface photovoltage. Finally, we demonstrate how the long-lasting negative-delay dynamics in GaAs can be utilized to conveniently establish the temporal overlap of pump and probe pulses in a time-resolved photoemission setup.


GaAs Conduction Band Probe Pulse Topological Insulator Valence Band Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Makoto Gonokami, Dan Riley, and Jared Schwede for stimulating discussions. J. A. S. acknowledges support by the Stanford Graduate Fellowship. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science.


  1. 1.
    F. Schmitt et al., Science 321, 1649 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Sobota et al., Phys. Rev. Lett. 108, 117403 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Y.H. Wang et al., Phys. Rev. Lett. 109, 127401 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    M. Hajlaoui et al., Nano Lett. 12, 3532 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    L. Perfetti et al., Phys. Rev. Lett. 99, 197001 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    R. Cortés et al., Phys Rev. Lett. 107, 097002 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    J. Graf et al., Nat. Phys. 7, 805 (2011)CrossRefGoogle Scholar
  8. 8.
    C.L. Smallwood et al., Science 336, 1137 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    L. Rettig et al., New J. Phys. 15, 083023 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    L. Rettig, P.S. Kirchmann, U. Bovensiepen, New J. Phys. 14, 023047 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Muraoka et al., Appl. Phys. Lett. 85, 2950 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    C.A. Schmuttenmaer et al., Chem. Phys. 205, 91 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    P. Siffalovic, M. Drescher, U. Heinzman, Europhys. Lett. 60, 924 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    S. Tokudomi et al., J. Phys. Soc. Jpn. 77, 014711 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    J. Azuma et al., Phys. Stat. Sol. (C) 6, 307 (2009)CrossRefGoogle Scholar
  16. 16.
    W. Widdra et al., Surf. Sci. 543, 87 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    D. Lim, R. Haight, J. Vac. Sci. Technol. A 23, 1698 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    S.I. Tanaka, J. Electron Spectrosc. Relat. Phenom. 185, 152 (2012)CrossRefGoogle Scholar
  19. 19.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, Hoboken, 2007)Google Scholar
  20. 20.
    W. Gudat, D.E. Eastman, J. Vac. Sci. Technol. 13, 831 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    E.J. Mele, J.D. Joannopoulos, Phys. Rev. B 19, 2928 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    J.R. Chelikowsky, M.L. Cohen, Phys. Rev. B 20, 4150 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    T.C. Chiang et al., Phys. Rev. B 21, 3513 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    T. Ichibayashi, K. Tanimura, Phys. Rev. Lett. 102, 087403 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    H. Petek, S. Ogawa, Prog. Surf Sci. 56, 239 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • S.-L. Yang
    • 1
    • 2
  • J. A. Sobota
    • 1
    • 2
  • P. S. Kirchmann
    • 1
  • Z.-X. Shen
    • 1
    • 2
  1. 1.Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkUSA
  2. 2.Geballe Laboratory for Advanced Materials, Departments of Physics and Applied PhysicsStanford UniversityStanfordUSA

Personalised recommendations