Advertisement

Applied Physics A

, Volume 114, Issue 1, pp 57–68 | Cite as

Controlled ultrashort-pulse laser-induced ripple formation on semiconductors

  • G. D. Tsibidis
  • E. Stratakis
  • P. A. LoukakosEmail author
  • C. Fotakis
Invited paper

Abstract

In this paper we review recent highlights of our research on the interaction of ultrafast laser pulses with surfaces with the aim of analyzing the fundamental mechanisms during micro/nanoprocessing of the irradiated surfaces and investigate the perspectives and applications arising from the irradiation of novel complex and functional materials with simple as well as temporally modulated femtosecond laser pulses. Our results on the irradiation of Si and ZnO surfaces show that the crater size and the ripple formation can be controlled by irradiation with properly temporally shaped laser pulses. Together with simulations of the dynamics of the phase changes of the material’s surface we show the potential for understanding and tailoring the engineering of smart optical materials at the micro- and nanoscale intended for novel optoelectronic applications and devices.

Keywords

Ultrashort Laser Pulse Molten Material Recoil Pressure Surface Plasmon Wave Pulse Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Integrated Initiative of European Laser Research Infrastructures LASERLAB-II (Grant Agreement No. 228334). G.D.T. and E.S. acknowledge financial support from the ‘3DNeuroscaffolds’ research project.

References

  1. 1.
    B. Wu, M. Zhou, J. Li, X. Ye, G. Li, L. Cai, Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser. Appl. Surf. Sci. 256, 61–66 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    N.M. Bulgakova, I.M. Burakov, Y.P. Meshcheryakov, R. Stoian, A. Rosenfeld, I.V. Hertel, Theoretical models and qualitative interpretations of Fs laser material processing. J Laser Micro Nanoen 2, 76–86 (2007)CrossRefGoogle Scholar
  3. 3.
    A.Y. Vorobyev, C. Guo, Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 7, 385–407 (2013)CrossRefGoogle Scholar
  4. 4.
    V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D.G. Papazoglou, I. Zergioti, Silicon electron emitters fabricated by ultraviolet laser pulses. Appl. Phys. Lett. 88, 081103 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    D. Ashkenasi, G. Muller, A. Rosenfeld, R. Stoian, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Fundamentals and advantages of ultrafast micro-structuring of transparent materials. Appl. Phys. A-Mater. 77, 223–228 (2003)ADSGoogle Scholar
  6. 6.
    E. Stratakis, Nanomaterials by ultrafast laser processing of surfaces. Sci. Adv. Mater. 4, 407–431 (2012)CrossRefGoogle Scholar
  7. 7.
    K. Sugioka, Y. Cheng, Ultrafast laser processing: from micro- to nanoscale (Pan Stanford Publications, Singapore, 2013)Google Scholar
  8. 8.
    M. Beresna, M. Gecevicius, P.G. Kazansky, Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited]. Opt. Mater. Express 1, 783–795 (2011)CrossRefGoogle Scholar
  9. 9.
    A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf, Adv. Mater., 20 4049 (2008)Google Scholar
  11. 11.
    K.J. Sugioka, M. Meunier, A. Pique, Laser precision microfabrication (Springer, Berlin, 2010)CrossRefGoogle Scholar
  12. 12.
    E. Stratakis, A. Ranella, C. Fotakis, Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications, Biomicrofluidics, 5, 013411 (2011)Google Scholar
  13. 13.
    J. Perriere, E. Millon, E. Fogarassy, Recent advances in laser processing of materials, ed. by Aufl, (Elsevier professional, [s.l.], 2006), p. 1Google Scholar
  14. 14.
    C.B. Arnold, A. Pique, Laser direct-write processing. MRS Bull. 32, 9–12 (2007)CrossRefGoogle Scholar
  15. 15.
    P.N. Prasad, Introduction to biophotonics (Wiley-Interscience, Hoboken, 2003)CrossRefGoogle Scholar
  16. 16.
    M. Lackner, Lasers in chemistry (Wiley-VCH, Weinheim, 2008)Google Scholar
  17. 17.
    E. Stratakis, A. Ranella, M. Farsari, C. Fotakis, Laser-based micro/nanoengineering for biological applications. Prog. Quant. Electron 33, 127–163 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    E. Magoulakis, E.L. Papadopoulou, E. Stratakis, C. Fotakis, P.A. Loukakos, Ultrafast electron dynamics in ZnO/Si micro-cones. Appl. Phys. A-Mater. 98, 701–705 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    J.K. Chen, J.E. Beraun, Modelling of ultrashort laser ablation of gold films in vacuum. J. Optics a-Pure Appl. Optics 5, 168–173 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    K. Fushinobu, L.M. Phinney, N.C. Tien, Ultrashort-pulse laser heating of silicon to reduce microstructure adhesion. Int. J. Heat Mass. Tran. 39, 3181–3186 (1996)CrossRefGoogle Scholar
  21. 21.
    V. Schmidt, W. Husinsky, G. Betz, Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons and the two-temperature model. Appl. Surf. Sci. 197, 145–155 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    T.E. Itina, O. Uteza, N. Sanner, M. Sentis, Interaction of femtosecond laser pulses with dielectric materials: insights from numerical modelling. J. Optoelectron. Adv. M 12, 470–473 (2010)Google Scholar
  23. 23.
    D. Bauerle, Laser processing and chemistry, 4th edn. (Springer, New York, 2011)CrossRefGoogle Scholar
  24. 24.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Optical ablation by high-power short-pulse lasers. J. Optical Soc. Amer. B-Optical Phys. 13, 459–468 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A-Mater., 63, 109–115 (1996)Google Scholar
  26. 26.
    F. Korte, S. Nolte, B.N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, H. Welling, Far-field and near-field material processing with femtosecond laser pulses. Appl. Phys. a-Mater. 69, S7–S11 (1999)ADSGoogle Scholar
  27. 27.
    W.S. Fann, R. Storz, H.W.K. Tom, J. Bokor, Electron thermalization in gold. Phys. Rev. B 46, 13592–13595 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    J. Hohlfeld, S.S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias, Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251, 237–258 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices––Micromachines can be created with higher resolution using two-photon absorption. Nature 412, 697–698 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3, 444–447 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, E.E.B. Campbell, Laser ablation of dielectrics with temporally shaped femtosecond pulses. Appl. Phys. Lett. 80, 353–355 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, N. M. Bulgakova, Temporal pulse manipulation and consequences for ultrafast laser processing of materials, Opt. Eng., 44, 051106 (2005)Google Scholar
  33. 33.
    A. Klini, P.A. Loukakos, D. Gray, A. Manousaki, C. Fotakis, Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses. Opt. Express 16, 11300–11309 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    A.C. Forsman, P.S. Banks, M.D. Perry, E.M. Campbell, A.L. Dodell, M.S. Armas, Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals, J. Appl. Phys., 98, 033302 (2005)Google Scholar
  35. 35.
    M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Suppression of ablation in femtosecond double-pulse experiments, Phys. Rev. Lett., 103, 195002 (2009)Google Scholar
  36. 36.
    A. Semerok, C. Dutouquet, Ultrashort double pulse laser ablation of metals. Thin Solid Films 453–54, 501–505 (2004)CrossRefGoogle Scholar
  37. 37.
    M. Li, S. Menon, J.P. Nibarger, G.N. Gibson, Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics. Phys. Rev. Lett. 82, 2394–2397 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    I.H. Chowdhury, X.F. Xu, A.M. Weiner, Ultrafast double-pulse ablation of fused silica, Appl. Phys. Lett., 86, 151110 (2005)Google Scholar
  39. 39.
    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, E.E.B. Campbell, Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials, Phys. Rev. B, 69, 054102 (2004)Google Scholar
  40. 40.
    D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO, J. Appl. Phys., 105, 034908 (2009)Google Scholar
  41. 41.
    M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, Origin of laser-induced near-sub-wavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009)CrossRefGoogle Scholar
  42. 42.
    E. V. Barmina, E. Stratakis, K. Fotakis, G.A. Shafeev, Generation of nanostructures on metals by laser ablation in liquids: new results, Quantum Electron+, 40, 1012–1020 (2010)Google Scholar
  43. 43.
    M. Birnbaum, Semiconductor surface damage produced by ruby lasers, J. Appl. Phys., 36, 3688 (1965)Google Scholar
  44. 44.
    A.Y. Vorobyev, V.S. Makin, C.L. Guo, Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals, J. Appl. Phys., 101, 034903 (2007)Google Scholar
  45. 45.
    J. Bonse, H. Sturm, D. Schmidt, W. Kautek, Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Appl. Phys. A-Mater. 71, 657–665 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses, Phys. Rev. Lett., 91, 247405 (2003)Google Scholar
  47. 47.
    M. Bolle, S. Lazare, Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet–laser radiation. J. Appl. Phys. 73, 3516–3524 (1993)ADSCrossRefGoogle Scholar
  48. 48.
    M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, Large area uniform nanostructures fabricated by direct femtosecond laser ablation. Opt. Express 16, 19354–19365 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    T.Y. Choi, C.P. Grigoropoulos, Observation of femtosecond laser-induced ablation in crystalline silicon. J. Heat Trans.-T Asme. 126, 723–726 (2004)CrossRefGoogle Scholar
  50. 50.
    T.Y. Choi, D.J. Hwang, C.P. Grigoropoulos, Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation. Appl. Surf. Sci. 197, 720–725 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon sub-wavelength optics. Nature 424, 824–830 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    G.D. Tsibidis, E. Stratakis, K.E. Aifantis, Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions. J. Appl. Phys. 111, 053502 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    E. Stratakis, A. Ranella, C. Fotakis, Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications. Biomicrofluidics 5, 013411 (2011)CrossRefGoogle Scholar
  54. 54.
    J. Bonse, M. Munz, H. Sturm, Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J. Appl. Phys. 97, 013538 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    J.E. Sipe, J.F. Young, J.S. Preston, H.M. Vandriel, Laser-induced periodic surface-structure 1. Theory. Phys. Rev. B 27, 1141–1154 (1983)ADSCrossRefGoogle Scholar
  56. 56.
    Z. Guosheng, P.M. Fauchet, A.E. Siegman, Growth of spontaneous periodic surface-structures on solids during laser illumination. Phys. Rev. B 26, 5366–5381 (1982)ADSCrossRefGoogle Scholar
  57. 57.
    J. Bonse, A. Rosenfeld, J. Kruger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys. 106, 104910 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    T.J.Y. Derrien, T.E. Itina, R. Torres, T. Sarnet, M. Sentis, Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. J. Appl. Phys. 114, 083104–083110 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light. Appl. Surf. Sci. 252, 4702–4706 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Phys. Rev. B 86, 115316 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    M. Barberoglou, G.D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, P. A. Loukakos, The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation, Appl. Phys. A 113, 273–283 (2013)Google Scholar
  62. 62.
    H.M. Vandriel, Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-Mu-M picosecond laser-pulses. Phys. Rev. B 35, 8166–8176 (1987)ADSCrossRefGoogle Scholar
  63. 63.
    J.K. Chen, D.Y. Tzou, J.E. Beraun, Numerical investigation of ultrashort laser damage in semiconductors. Int. J. Heat Mass Tran. 48, 501–509 (2005)CrossRefGoogle Scholar
  64. 64.
    R. Kelly, A. Miotello, Comments on explosive mechanisms of laser sputtering. Appl. Surf. Sci. 96–8, 205–215 (1996)ADSCrossRefGoogle Scholar
  65. 65.
    J.H. Cho, D.F. Farson, J.O. Milewski, K.J. Hollis, Weld pool flows during initial stages of keyhole formation in laser welding. J. Phys. D Appl. Phys. 42, 175502 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    L.D. Landau, E.M. Lifshitz, Fluid mechanics (2nd edn.), (1987)Google Scholar
  67. 67.
    K. Sokolowski-Tinten, D. von der Linde, Generation of dense electron–hole plasmas in silicon. Phys. Rev. B 61, 2643–2650 (2000)ADSCrossRefGoogle Scholar
  68. 68.
    J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1–87 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    D. Hulin, M. Combescot, J. Bok, A. Migus, J.Y. Vinet, A. Antonetti, Energy-transfer during silicon irradiation by femtosecond laser-pulse. Phys. Rev. Lett. 52, 1998–2001 (1984)ADSCrossRefGoogle Scholar
  71. 71.
    J. Bonse, J. Kruger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. J. Appl. Phys. 108, 034903 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    S. Amoruso, R. Bruzzese, X. Wang, J. Xia, Ultrafast laser ablation of metals with a pair of collinear laser pulses. Appl. Phys. Lett. 93, 191504 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    S. Hohm, A. Rosenfeld, J. Kruger, J. Bonse, Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation. Appl. Surf. Sci. 278, 7–12 (2013)ADSCrossRefGoogle Scholar
  74. 74.
    E.L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, P.A. Loukakos, Laser induced forward transfer of metal oxides using femtosecond double pulses. Appl. Surf. Sci. 257, 508–511 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    A. Rosenfeld, M. Rohloff, S. Hohm, J. Kruger, J. Bonse, Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse irradiation sequences. Appl. Surf. Sci. 258, 9233–9236 (2012)ADSCrossRefGoogle Scholar
  76. 76.
    M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, I.V. Hertel, Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon. Appl. Phys. Lett. 83, 1474–1476 (2003)ADSCrossRefGoogle Scholar
  77. 77.
    R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, Dynamic temporal pulse shaping in advanced ultrafast laser material processing. Appl. Phys. A-Mater. 77, 265–269 (2003)ADSGoogle Scholar
  78. 78.
    S. Hohm, M. Rohloff, A. Rosenfeld, J. Kruger, J. Bonse, Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences. Appl. Phys. A Mater. Sci. Proc. 110, 553–557 (2013)ADSCrossRefGoogle Scholar
  79. 79.
    M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Suppression of ablation in femtosecond double-pulse experiments. Phys. Rev. Lett. 103, 195002 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    M. Rohloff, S.K. Das, S. Hohm, R. Grunwald, A. Rosenfeld, J. Kruger, J. Bonse, Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences. J. Appl. Phys. 110, 014910 (2011)ADSCrossRefGoogle Scholar
  81. 81.
    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, E.E.B. Campbell, A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of coulomb explosion. Appl. Phys. A-Mater. 81, 345–356 (2005)ADSCrossRefGoogle Scholar
  82. 82.
    M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P.A. Loukakos, E. Stratakis, Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses. Opt. Express 21, 18501–18508 (2013)ADSCrossRefGoogle Scholar
  83. 83.
    C.B. Li, D.H. Feng, T.Q. Jia, H.Y. Sun, X.X. Li, S.Z. Xu, X.F. Wang, Z.Z. Xu, Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers. Solid State Commun. 136, 389–394 (2005)ADSCrossRefGoogle Scholar
  84. 84.
    M.A. M. Versteegh, T. Kuis, H.T.C. Stoof, J.I. Dijkhuis, Ultrafast screening and carrier dynamics in ZnO: theory and experiment, Phys. Rev. B, 84, 035207 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. D. Tsibidis
    • 1
  • E. Stratakis
    • 1
    • 2
  • P. A. Loukakos
    • 1
    Email author
  • C. Fotakis
    • 1
    • 3
  1. 1.Foundation for Research and Technology-HellasInstitute of Electronic Structure and Laser (FORTH-IESL)HeraklionGreece
  2. 2.Materials Science and Technology DepartmentUniversity of CreteHeraklionGreece
  3. 3.Physics DepartmentUniversity of CreteHeraklionGreece

Personalised recommendations