Applied Physics A

, Volume 116, Issue 1, pp 251–257 | Cite as

Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon

  • Neeraj Kumar
  • Salvatore Gennaro
  • Pradeep Vallachira Warriam Sasikumar
  • Gian Domenico Sorarù
  • Paolo Bettotti


In this article we describe a reliable etching method to fabricate porous silicon free-standing membranes (FSMs) based on a self detachment of the porous layer in moderately doped n-type silicon substrates. We found that stable growth of smooth and straight pores is restricted to a narrow range of etching conditions and, unlike p-type substrates, the lift-off of the membrane is a self-limited process that does not require a large burst of current. The detachment of the porous membrane is independent of the structure of the already porosified layer, meaning that the average pore diameter can be tuned from nano to macro size within the same membrane. We also demonstrate that, despite their limited thickness, FSMs are quite robust and can sustained further processing. Thus, the etching receipt we are proposing here extends the range of sensors and filters that can be fabricated using porous silicon technology.


Porous Silicon Applied Current Density Increase Annealing Time Transitional Layer Large Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the European Commission through the project FP7-257401 POSITIVE. The authors acknowledge TNLabs network for the sharing of the experimental facilities. The authors are grateful for the manuscript review provided by Dr. M. Swann.


  1. 1.
    J. Alvarez, P. Bettotti, I. Suarez, N. Kumar, D. Hill, V. Chirvony, L. Pavesi, J. Martinez-Pastor, Opt. Express 19, 26106 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    L.M. Bonanno, L.A. DeLouise, Biosens. Bioelectron. 23, 444 (2007)CrossRefGoogle Scholar
  3. 3.
    E.C. Wu, J.S. Andrews, L.Y. Chen, W.R. Freeman, L. Pearson, M.J. Sailor, Biomaterials 32, 1957 (2011)CrossRefGoogle Scholar
  4. 4.
    E. Gultepe, D. Nagesha, S. Sridhar, M. Amiji, Adv. Drug. Deliver. Rev. 62, 305 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Wolf, B. Terheiden, R. Brendel, Prog. Photovoltaics 15, 199 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Yuan, R. Mitdank, A. Mogilatenko, S.F. Fischer, J. Phys. Chem. C 116, 13767 (2012)CrossRefGoogle Scholar
  7. 7.
    J. de Boor, D.S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Foll, V. Schmidt, EPL 96, 16001 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, Nano Lett. 10, 4279 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J.H. Peterman, D. Zielke, J. Schmidt, F. Haase, E.G. Rojas, R. Brendel, Prog. Phtovol. Res. Appl. 20, 1 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro, L. Pavesi, J. Appl. Phys. 93, 9274 (2003)CrossRefGoogle Scholar
  11. 11.
    H. Koyama, F.M. Fauchet, J. Appl. Phys. 87, 1788 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    V. Lehmann, R. Stengl, A. Luigart, Mater. Sci. Eng. B 69(70), 11–22 (2000)CrossRefGoogle Scholar
  13. 13.
    H. Ouyang, M. Christophersen, P.M. Fauchet, Phys. Stat. sol. (a) 202, 1396 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    P. Granitzer, K. Rumpf, P. Polt, A. Reichmann, H. Krenn, Phys. E 38, 205 (2007)CrossRefGoogle Scholar
  15. 15.
    F.A. Harraz, S.M. El-Sheikh, T. Sakka, Y.H. Ogata, Electrochim. Acta 53, 6444 (2008)CrossRefGoogle Scholar
  16. 16.
    V. Lehmann, R. Stengl, A. Luigart, Mat. Sci. Eng B69, 11 (2000)CrossRefGoogle Scholar
  17. 17.
    Y. Xiao, X. Li, H.-D. Um, X. Gao, Z. Guo, J.-H. Lee, Electrochim. Acta 74, 93 (2012)CrossRefGoogle Scholar
  18. 18.
    X.G. Zhang, Electrochemistry of silicon and its oxide (Kluwer Academic Publisher, New York, 2001)Google Scholar
  19. 19.
    J. Alvarez, C. Serrano, D. Hill, J. Martinez-Pastor, Opt. Lett. 38, 1058 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    D.H. Ge, J.W. Jiao, S. Zhang, Y.L. Wang, Electrochem. Commun. 12, 603 (2010)CrossRefGoogle Scholar
  21. 21.
    P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, M. Galli, M. Patrini, F. Marabelli, J. Appl. Phys. 92, 6966 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    T. Yonehara, K. Sakaguchi, N. Sato, Appl. Phys. Lett. 64, 2108 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    J.N. Burghartz, W. Appel, H.D. Rempp, M. Zimmermann, IEEE Trans. Electron Devices 56, 321 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    R.C.G. Naber, N. Guillevin, A.R. Burgers, L.J. Geerligs, A.W. Weeber, IEEE Photovoltaic Specialists Conference, 5411189, 000990 (2009)Google Scholar
  25. 25.
    C.S. Solanki, R.R. Bilyalov, J. Poortmans, J.-P. Celis, J. Nijs, R. Mertens, J. Electrochem. Soc. 151, C307 (2004)CrossRefGoogle Scholar
  26. 26.
    P.C. Searson, Appl. Phys. Lett. 59, 832 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    M.B. Joshi, S.L. Hayashi, M.S. Goorsky, Electrochem. Solid State Lett. 11, H236 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Van Hoeymissen, V. Depauw, I. Kuzma-Filipek, K. Van Nieuwenhuysen, M. Recaman Payo, Y. Qiu, I. Gordon, J. Poortmans, Phys. Stat. Sol. (a) 208, 1433 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    S. Manotasa, F. Agullo-Ruedaa, J.D. Morenob, F. Ben-Handerb, J.M. Martinez-Duart, Thin Solid Films 401, 306 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Neeraj Kumar
    • 1
  • Salvatore Gennaro
    • 2
  • Pradeep Vallachira Warriam Sasikumar
    • 3
  • Gian Domenico Sorarù
    • 3
  • Paolo Bettotti
    • 1
  1. 1.Nanoscience Laboratory, Department of PhysicsUniversity of TrentoPovoItaly
  2. 2.MinaLabFBKPovoItaly
  3. 3.Department of Materials Engineering and Industrial TechnologyUniversity of TrentoTrentoItaly

Personalised recommendations