Applied Physics A

, Volume 114, Issue 1, pp 75–79 | Cite as

Structural evolution of nanopores and cracks as fundamental constituents of ultrashort pulse-induced nanogratings

  • F. ZimmermannEmail author
  • A. Plech
  • S. Richter
  • S. Döring
  • A. Tünnermann
  • S. Nolte
Invited Paper


We present an extensive study of the underlying structure of femtosecond laser-induced nanogratings in fused silica. To explore the evolution of the three-dimensional structure of the nanopores and cracks, of which the nanogratings consist, we performed small angle X-ray scattering measurements as well as focused ion beam milling and scanning electron microscopy. Our results show that cracks with dimensions of (280 \(\times \) 25 \(\times \) 380) nm\(^{3}\) and nanopores with typical diameters of (30 \(\times \) 25 \(\times \) 75) nm\(^{3}\) are formed independent of various illumination parameters. With increasing number of laser pulses the smaller pores fuse to larger structures. Furthermore, the data suggest a cross-sectional change of the pores from cuboidal to ellipsoidal.


Laser Pulse Energy Grating Plane Laser Induce Periodic Surface Structure Femtosecond Laser Direct Writing Large Feature Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge beamtime at the Swiss Light Source (PSI, Villigen Ch) and excellent support by M. Guizar-Sicairos. We appreciated discussions with A. Menzel. The work is supported by DFG via priority program SPP 1327 and by the program “research with photons, neutrons and ions” by the Helmholtz society. Sören Richter was supported by the Hans L. Merkle Stiftung. We thank Michael Steinert and Reinhard Geiss for recording the FIB images.


  1. 1.
    K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, MRS Bull. 31, 620 (2006)CrossRefGoogle Scholar
  2. 2.
    R.R. Gattass, E. Mazur, Nat. Photon 2, 219 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    S. Nolte, M. Will, J. Burghoff, A. Tünnermann, Appl. Phys. A 77, 109 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    A. Szameit, S. Nolte, J. Phys. B. At. Mol. Opt. 43, 163001 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    E.G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B.L. Davis, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    J. Reif, O. Varlamova, F. Costache, Appl. Phys. A 92, 1019 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    S. Richter, M. Heinrich, S. Döring, A. Tünnermann, Appl. Phys. A 104, 503–507 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    M. Beresna, M. Gecevičius, P.G. Kazansky, Opt. Mater. Exp. 1, 783 (2011)CrossRefGoogle Scholar
  10. 10.
    W. Cai, A.R. Libertun, R. Piestun, Opt. Exp. 14, 3785 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    N.M. Bulgakova, V.P. Zhukov, Y.P. Meshcheryakov, Appl. Phys. B (2013). doi: 10.1007/s00340-013-5488-0
  12. 12.
    M. Lancry, B. Poumellec, K. Cook, J. Canning, in Proceedings of the IQEC/CLEO Pacific Rim (Optical Society of America, Sydney, 2011) Google Scholar
  13. 13.
    S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, S. Nolte, Laser Photonics Rev. 6, 787 (2012)CrossRefGoogle Scholar
  14. 14.
    R.A.D. Mackenzie, G.D.W. Smith, Nanotechnology 1, 162 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    M. Sztucki, T. Narayanana, G. Beaucage, J. Appl. Phys. 101, 114304 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    G. Beaucage, J. Appl. Cryst. 18, 717–728 (1995)CrossRefGoogle Scholar
  17. 17.
    H.K. Kammler, C. Beaucage et al., J. Appl. Phys. 97, 054309 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    A. Plech, P. Leiderer, J. Boneberg, Laser Photonics Rev. 3, 435 (2006)CrossRefGoogle Scholar
  19. 19.
    J. Ilavsky, P.R. Jemian, J. Appl. Cryst. 42, 347–353 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Lancry, F. Brisset, B. Poumellec, in Proceedings of Bragg gratings, photosensitivity, and poling in glass waveguides (BGPP) (Paper BWC3, Karlsruhe, 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • F. Zimmermann
    • 1
    Email author
  • A. Plech
    • 2
  • S. Richter
    • 1
  • S. Döring
    • 1
  • A. Tünnermann
    • 1
    • 3
  • S. Nolte
    • 1
    • 3
  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institute for Synchrotron RadiationKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations