Applied Physics A

, Volume 116, Issue 1, pp 59–67 | Cite as

Dynamic performance of dissipative dielectric elastomers under alternating mechanical load

  • Junshi Zhang
  • Hualing Chen
  • Junjie Sheng
  • Lei Liu
  • Yongquan Wang
  • Shuhai Jia


This paper presents a theoretical study about the effect of dissipation on the dynamic performance of a dielectric elastomer membrane subject to a combination of mechanical load and voltage. The thermodynamic dissipative model is given and the equation of motion is deduced by a free energy method. It is found that when the applied mechanical load and voltage are static, the membrane may reach a state of equilibrium after the viscoelastic relaxation. When the voltage is static but the mechanical load is sinusoidal, the membrane will resonate at multiple frequencies. The study result indicates that the viscoelasticity can reduce the natural frequency and increase the mean stretch of the dielectric elastomer. After the power source is cut off, the effect of current leakage on dynamic performance under alternating mechanical load is that the natural frequency increases and the mean stretch reduces.


Mechanical Load Current Leakage Dynamic Performance Rheological Model Dimensionless Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been supported by the Doctoral Fund of Ministry of Education of China (Grant No. 20120201110030) and Major Program of National Natural Science Foundation of China (51290294).


  1. 1.
    R. Pelrine, R. Kornbluh, Q.B. Pei, J. Joseph, Science 287, 836 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    M. Wissler, E. Mazza, Sens. Actuators A 138, 384 (2007)CrossRefGoogle Scholar
  3. 3.
    G. Kofod, W. Wirges, M. Paajanen, S. Bauer, Appl. Phys. Lett. 90, 081916 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Z.G. Suo, Acta. Mech. Solida. Sin. 23, 549 (2010)CrossRefGoogle Scholar
  5. 5.
    N. Galler, N. Ditlbacher, B. Steinberger, A. Hohenau, M. Dansachmüller, F. Camacho-Gonzales, S. Bauer, J.R. Krenn, A. Leitner, F.R. Aussenegg, Appl. Phys. B 85, 7 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    G. Kofod, M. Paajanen, S. Bauer, Appl. Phys. A 85, 141 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    G. Kovacs, L. Düring, S. Michel, G. Terrasi, Sens. Actuators A 155, 299 (2009)CrossRefGoogle Scholar
  8. 8.
    W.P. Yang, L.Y. Wu, L.W. Chen, J. Phys. D Appl. Phys. 41, 135408 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    P. Brochu, Q. Pei, Macromol. Rapid Commun. 31, 10 (2010)CrossRefGoogle Scholar
  10. 10.
    T. McKay, B. O’Brien, E. Calius, I. Anderson, Smart Mater. Struct. 19, 055025 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    N. Bonwit, J. Heim, M. Rosenthal, C. Duncheon, A. Beavers, Proc. SPIE 6168, 616805 (2006)CrossRefGoogle Scholar
  12. 12.
    J.W. Fox, N.C. Goulbourne, J. Mech. Phys. Solids 57, 1417 (2009)ADSCrossRefMATHGoogle Scholar
  13. 13.
    A. York, J. Dunn, S. Seelecke, Smart Mater. Struct. 19, 094014 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    E.M. Mockensturm, N.C. Goulbourne, Int. J. Nonlinear Mech. 41, 388 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    F. Carpi, S. Bauer, D. De Rossi, Science 330, 1759 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    K. Hochradel, S.J. Rupitsch, A. Sutor, R. Lerch, D.K. Vu, P. Steinmann, Appl. Phys. A 107, 531 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    P. Dubois, S. Rosset, M. Niklaus, M. Dadras, H. Shea, J. Microelectromech. Syst. 17, 1072 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Zhu, S.Q. Cai, Z.G. Suo, Polym. Int. 59, 378 (2010)CrossRefGoogle Scholar
  19. 19.
    T.F. Li, S.X. Qu, W. Yang, Int. J. solid struct. 49, 3754 (2012)CrossRefGoogle Scholar
  20. 20.
    H.D. Yong, X.Z. He, Y.H. Zhou, Int. J. Eng. Sci. 49, 792 (2011)CrossRefGoogle Scholar
  21. 21.
    G.G. Raju, Dielectrics in Electric Fields (Marcel Dekker, New York, 2003)CrossRefGoogle Scholar
  22. 22.
    A.R. Blythe, D. Bloor, Electrical Properties of Polymers (Cambridge University Press, Cambridge, 2005)Google Scholar
  23. 23.
    D. Rychkov, M. Dansachmuller, H. Ragusch, A. Becker, G. Kofod, 10th IEEE International Conference on Solid Dielectrics (ICSD) (2010). doi: 10.1109/ICSD.2010.5568252
  24. 24.
    R. Kaltseis, C. Keplinger, R. Baumgartner, M. Kaltenbrunner, T. Li, P. Mächler, R. Schwödiauer, Z. Suo, S. Bauer, Appl. Phys. Lett. 99, 162904 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, Appl. Phys. Lett. 92, 192903 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    T.A. Gisby, S.Q. Xie, E.P. Calius, I.A. Anderson, Proc. SPIE 7642, 764213 (2010)CrossRefGoogle Scholar
  27. 27.
    C.C. Foo, S.Q. Cai, S.J.A. Koh, S. Bauer, Z.G. Suo, J. Appl. Phys. 111, 034102 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    C.C. Foo, S.J.A. Koh, C. Keplinger, R. Kaltseis, S. Bauer, Z.G. Suo, J. Appl. Phys. 111, 094107 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    B. Li, H. Chen, J. Zhou, Appl. Phys. A 110, 59 (2013) Google Scholar
  30. 30.
    W. Hong, J. Mech. Phys. Solids 59, 637 (2011)Google Scholar
  31. 31.
    B. Li, H. Chen, J. Qiang, J. Sheng, J. Zhou, Proc. SPIE 8687, 86872T (2013)Google Scholar
  32. 32.
    Y. Wang, H. Xue, H. Chen, J. Qiang, Appl. Phys. A 112, 339 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    M.N. Silberstein, M.C. Boyce, J. Power Sour. 195, 5692 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Wissler, E. Mazza, Sens. Actuators A 134, 494 (2007)CrossRefGoogle Scholar
  35. 35.
    S. Michel, X.Q. Zhang, M. Wissler, C. Löwe, G. Kovacs, Polym. Int. 59, 391 (2010)CrossRefGoogle Scholar
  36. 36.
    L. Di Lillo, A. Schmidt, D.A. Carnelli, P. Ermanni, G. Kovacs, E. Mazza, A. Bergamini, J. Appl. Phys. 111, 024904 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    B. Li, J. Zhou, H. Chen, Appl. Phys. Lett. 99, 244101 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Junshi Zhang
    • 1
    • 2
  • Hualing Chen
    • 1
    • 3
  • Junjie Sheng
    • 1
    • 3
  • Lei Liu
    • 1
    • 3
  • Yongquan Wang
    • 3
  • Shuhai Jia
    • 3
  1. 1.State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.School of AerospaceXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  3. 3.School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations