Advertisement

Applied Physics A

, Volume 114, Issue 2, pp 297–300 | Cite as

All-carbon detector with buried graphite pillars in CVD diamond

  • T. Kononenko
  • V. Ralchenko
  • A. Bolshakov
  • V. Konov
  • P. Allegrini
  • M. Pacilli
  • G. Conte
  • E. Spiriti
Rapid Communication

Abstract

A diamond detector of 3D architecture without any metallization is developed for spectroscopy of ionizing radiation and single particles detection. The carbon electrode system was fabricated using a femtosecond infrared laser (\(\lambda \) = 1,030 nm) to induce graphitization on the surface and inside 4.0 \(\times \) 4.0 \(\times \) 0.4 mm\(^{3}\) single-crystal chemical vapor deposition diamond slab, resulting in an array of 84 buried graphite pillars of 30 \(\upmu \)m diameter formed orthogonally to the surface and connected by surface graphite strips. Sensitivity to ionizing radiation with \(^{90}\)Sr \(\upbeta \)-source has been measured for the 3D detector and high charge collection efficiency is demonstrated.

Keywords

Chemical Vapor Deposition Diamond Surface Strip Diamond Detector Pillar Diameter Femtosecond Infrared Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank S. Ryzhkov for diamond polishing. The work was supported by the RFBR grant 13-02-12068.

References

  1. 1.
    M. Girolami, P. Allegrini, G. Conte, S. Salvatori, D.M. Trucchi, A. Bolshakov, V. Ralchenko, IEEE-EDL 33, 224–226 (2012)CrossRefGoogle Scholar
  2. 2.
    W. Adams et al., Nucl. Instr. Method A 565, 278–283 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    V.P. Popov, L.N. Safronov, O.V. Naumova, D.V. Nikolaev, I.N. Kupriyanov, YuN Palyanov, Nucl. Instr. Method B 282, 100–107 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    C.Z. Wang, K.M. Ho, M.D. Shirk, P.A. Molian, Phys. Rev. Lett. 85, 4092 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    G. A. Scarsbrook et al., Patent No. 20090175777, USPC class: 423446 (2009)Google Scholar
  6. 6.
    M. Barbero et al., CERN/LHCC 2007-002, LHCC-RD-012, status report/RD42, 15 January 2007Google Scholar
  7. 7.
    N. Wermes, Nucl. Instr. Method A 650, 245–252 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    T.V. Kononenko, V.I. Konov, S.M. Pimenov, N.M. Rossukanyi, A.I. Rukovishnikov, V. Romano, Diam. Relat. Mater. 20, 264–268 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    V.I. Konov, Laser Photonics Rev. 6, 739–766 (2012)CrossRefGoogle Scholar
  10. 10.
    S.I. Parker, C.J. Kenney, J. Segal, Nucl. Instr. Method A 395, 328 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    A. Oh, B. Caylar, M. Pomorski, T. Wengler, Diam. Relat. Mater. 38, 9–13 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    T.V. Kononenko, A.A. Khomich, V.I. Konov, Diam. Relat. Mater. 37, 50–54 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S. Zhao, PhD dissertation thesis, Ohio State University, Columbus (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • T. Kononenko
    • 1
  • V. Ralchenko
    • 1
  • A. Bolshakov
    • 1
  • V. Konov
    • 1
  • P. Allegrini
    • 2
  • M. Pacilli
    • 2
  • G. Conte
    • 3
    • 2
  • E. Spiriti
    • 4
  1. 1.A.M. Prokorhov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Department of SciencesUniversity Roma TreRomeItaly
  3. 3.INFN, Roma TreRomeItaly
  4. 4.LNFINFNFrascatiItaly

Personalised recommendations