Advertisement

Applied Physics A

, Volume 114, Issue 1, pp 11–32 | Cite as

Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations

  • Chengping Wu
  • Leonid V. ZhigileiEmail author
Invited paper

Abstract

The microscopic mechanisms of femtosecond laser ablation of an Al target are investigated in large-scale massively parallel atomistic simulations performed with a computational model combining classical molecular dynamics technique with a continuum description of the laser excitation and subsequent relaxation of conduction band electrons. The relatively large lateral size of the computational systems used in the simulations enables a detailed analysis of the evolution of multiple voids generated in a sub-surface region of the irradiated target in the spallation regime, when the material ejection is driven by the relaxation of laser-induced stresses. The nucleation, growth, and coalescence of voids take place within a broad (\(\sim \)100 nm) region of the target, leading to the formation of a transient foamy structure of interconnected liquid regions and eventual separation (or spallation) of a thin liquid layer from the bulk of the target. The thickness of the spalled layer is decreasing from the maximum of \(\sim \)50 nm while the temperature and ejection velocity are increasing with increasing fluence. At a fluence of \(\sim \)2.5 times the spallation threshold, the top part of the target reaches the conditions for an explosive decomposition into vapor and small clusters/droplets, marking the transition to the phase explosion regime of laser ablation. This transition is signified by a change in the composition of the ablation plume from large liquid droplets to a mixture of vapor-phase atoms and clusters/droplets of different sizes. The clusters of different sizes are spatially segregated in the expanding ablation plume, where small/medium size clusters present in the middle of the plume are followed by slower (velocities of less than 3 km/s) large droplets consisting of more than 10,000 atoms. The similarity of some of the characteristics of laser ablation of Al targets (e.g., evolution of voids in the spallation regime and cluster size distributions in the phase explosion regime) to the ones observed in earlier simulations performed for different target materials points to the common mechanical and thermodynamic origins of the underlying processes.

Keywords

Cluster Size Distribution Irradiate Target Ablation Plume Phase Explosion Explosive Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support for this work was provided by the National Science Foundation (NSF) through Grants DMR-0907247 and CMMI-1301298, Electro Scientific Industries, Inc., and the Air Force Office of Scientific Research through Grant FA9550-10-1-0541. Computational support was provided by the Oak Ridge Leadership Computing Facility (projects MAT048) and NSF through the Extreme Science and Engineering Discovery Environment (project TG-DMR110090).

References

  1. 1.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)CrossRefADSGoogle Scholar
  2. 2.
    S.-S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, Appl. Phys. A 69, S99 (1999)ADSGoogle Scholar
  3. 3.
    R.L. Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, Appl. Phys. Lett. 80, 3886 (2002)CrossRefADSGoogle Scholar
  4. 4.
    A.Y. Vorobyev, C. Guo, Appl. Phys. A 86, 321 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Q.-Z. Zhao, S. Malzer, L.-J. Wang, Opt. Express 15, 15741 (2007)CrossRefADSGoogle Scholar
  6. 6.
    Y. Dai, M. He, H. Bian, B. Lu, X. Yan, G. Ma, Appl. Phys. A 106, 567 (2012)CrossRefADSGoogle Scholar
  7. 7.
    S. Barcikowski, A. Hahn, A.V. Kabashin, B.N. Chichkov, Appl. Phys. A 87, 47 (2007)CrossRefADSGoogle Scholar
  8. 8.
    J. Perriere, C. Boulmer-Leborgne, R. Benzerga, S. Tricot, J. Phys. D: Appl. Phys. 40, 7069 (2007)Google Scholar
  9. 9.
    N. Haustrup, G.M. O’Connor, Appl. Phys. Lett. 101, 263107 (2012)CrossRefADSGoogle Scholar
  10. 10.
    A. Miotello, N. Patel, Appl. Surf. Sci. 278, 19 (2013)CrossRefADSGoogle Scholar
  11. 11.
    P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996)CrossRefADSGoogle Scholar
  12. 12.
    V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006)CrossRefADSGoogle Scholar
  13. 13.
    Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)CrossRefADSGoogle Scholar
  14. 14.
    H.O. Jeschke, M.S. Diakhate, M.E. Garcia, Appl. Phys. A 96, 33 (2009)CrossRefADSGoogle Scholar
  15. 15.
    Z. Lin, R.E. Allen, J. Phys.: Condens. Matter 21, 485503 (2009)Google Scholar
  16. 16.
    C.F. Richardson, P. Clancy, Mol. Sim. 7, 335 (1991)CrossRefGoogle Scholar
  17. 17.
    X. Wang, X. Xu, J. Heat Transfer 124, 265 (2002)CrossRefGoogle Scholar
  18. 18.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)CrossRefADSGoogle Scholar
  19. 19.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 91, 105701 (2003)CrossRefADSGoogle Scholar
  20. 20.
    Z. Lin, L.V. Zhigilei, Phys. Rev. B 73, 184113 (2006)CrossRefADSGoogle Scholar
  21. 21.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)CrossRefGoogle Scholar
  22. 22.
    Z. Lin, E.M. Bringa, E. Leveugle, L.V. Zhigilei, J. Phys. Chem. C 114, 5686 (2010)CrossRefGoogle Scholar
  23. 23.
    E.T. Karim, Z. Lin, L.V. Zhigilei, AIP Conf. Proc. 1464, 280 (2012)CrossRefADSGoogle Scholar
  24. 24.
    Z. Lin, R.A. Johnson, L.V. Zhigilei, Phys. Rev. B 77, 214108 (2008)CrossRefADSGoogle Scholar
  25. 25.
    D.S. Ivanov, Z. Lin, B. Rethfeld, G.M. O’Connor, Th.J. Glynn, L.V. Zhigilei, J. Appl. Phys. 107, 013519 (2010)Google Scholar
  26. 26.
    C. Wu, D.A. Thomas, Z. Lin, L.V. Zhigilei, Appl. Phys. A 104, 781 (2011)CrossRefADSGoogle Scholar
  27. 27.
    L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88, 1281 (2000)CrossRefADSGoogle Scholar
  28. 28.
    S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, A.M. Oparin, Yu.V. Petrov, JETP Lett. 77, 606 (2003)Google Scholar
  29. 29.
    E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643 (2004)ADSGoogle Scholar
  30. 30.
    L.V. Zhigilei, D.S. Ivanov, E. Leveugle, B. Sadigh, E.M. Bringa, Proc. SPIE 5448, 505 (2004)CrossRefADSGoogle Scholar
  31. 31.
    A.K. Upadhyay, H.M. Urbassek, J. Phys. D: Appl. Phys. 38, 2933 (2005)Google Scholar
  32. 32.
    A.K. Upadhyay, N.A. Inogamov, B. Rethfeld, H.M. Urbassek, Phys. Rev. B 78, 045437 (2008)CrossRefADSGoogle Scholar
  33. 33.
    B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Phys. Rev. B 82, 064113 (2010)CrossRefADSGoogle Scholar
  34. 34.
    S.I. Ashitkov, N.A. Inogamov, V.V. Zhakhovskii, Yu.N. Emirov, M.B. Agranat, I.I. Oleinik, S.I. Anisimov, V.E. Fortov, JETP Lett. 95, 176 (2012)Google Scholar
  35. 35.
    E. Ohmura, I. Fukumoto, Int. J. Japan Soc. Prec. Eng. 30, 128 (1996)Google Scholar
  36. 36.
    L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, J. Phys. Chem. B 101, 2028 (1997)CrossRefGoogle Scholar
  37. 37.
    R.F.W. Herrmann, J. Gerlach, E.E.B. Campbell, Appl. Phys. A 66, 35 (1998)CrossRefADSGoogle Scholar
  38. 38.
    X. Wu, M. Sadeghi, A. Vertes, J. Phys. Chem. B 102, 4770 (1998)Google Scholar
  39. 39.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Phys. Rev. B 66, 115404 (2002)CrossRefADSGoogle Scholar
  40. 40.
    L.V. Zhigilei, Appl. Phys. A 76, 339 (2003)CrossRefADSGoogle Scholar
  41. 41.
    L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Chem. Rev. 103, 321 (2003)CrossRefGoogle Scholar
  42. 42.
    P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. Lett. 91, 225502 (2003)CrossRefADSGoogle Scholar
  43. 43.
    N.N. Nedialkov, P.A. Atanasov, S.E. Imamova, A. Ruf, P. Berger, F. Dausinger, Appl. Phys. A 79, 1121 (2004)CrossRefADSGoogle Scholar
  44. 44.
    C. Cheng, X. Xu, Phys. Rev. B 72, 165415 (2005)CrossRefADSGoogle Scholar
  45. 45.
    P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. B 73, 134108 (2006)Google Scholar
  46. 46.
    S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, J. Phys. D: Appl. Phys. 40, 331 (2007)Google Scholar
  47. 47.
    M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, Yu.V. Petrov, V.E. Fortov, V.A. Khokhlov, Appl. Surf. Sci. 253, 6276 (2007)Google Scholar
  48. 48.
    E. Leveugle, L.V. Zhigilei, J. Appl. Phys. 102, 074914 (2007)CrossRefADSGoogle Scholar
  49. 49.
    M. Prasad, P. Conforti, B.J. Garrison, J. Appl. Phys. 101, 103113 (2007)CrossRefADSGoogle Scholar
  50. 50.
    L. Zhang, X. Wang, Appl. Surf. Sci. 255, 3097 (2008)CrossRefADSGoogle Scholar
  51. 51.
    M. Gill-Comeau, L.J. Lewis, Phys. Rev. B 84, 224110 (2011)CrossRefADSGoogle Scholar
  52. 52.
    L.V. Zhigilei, A.N. Volkov, E. Leveugle, M. Tabetah, Appl. Phys. A 105, 529 (2011)CrossRefADSGoogle Scholar
  53. 53.
    S. Sonntag, C. Trichet Paredes, J. Roth, H.-R. Trebin, Appl. Phys. A 104, 559 (2011)Google Scholar
  54. 54.
    G. Norman, S. Starikov, V. Stegailov, V. Fortov, I. Skobelev, T. Pikuz, A. Faenov, S. Tamotsu, Y. Kato, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Ohba, T. Kaihori, Y. Ochi, T. Imazono, Y. Fukuda, M. Kando, T. Kawachi, J. Appl. Phys. 112, 013104 (2012)Google Scholar
  55. 55.
    X. Li, L. Jiang, Appl. Phys. A 109, 367 (2012)CrossRefADSGoogle Scholar
  56. 56.
    R.K. Singh, J. Narayan, Phys. Rev. B 41, 8843 (1990)CrossRefADSGoogle Scholar
  57. 57.
    A. Peterlongo, A. Miotello, R. Kelly, Phys. Rev. E 50, 4716 (1994)CrossRefADSGoogle Scholar
  58. 58.
    J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, J. Appl. Phys. 78, 4696 (1995)CrossRefADSGoogle Scholar
  59. 59.
    X. Xu, G. Chen, K.H. Song, Int. J. Heat Mass Transfer 42, 1371 (1999)CrossRefGoogle Scholar
  60. 60.
    O.A. Bulgakova, N.M. Bulgakova, V.P. Zhukov, Appl. Phys. A 101, 53 (2010)CrossRefADSGoogle Scholar
  61. 61.
    K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller, Phys. Rev. E 62, 1202 (2000)CrossRefADSGoogle Scholar
  62. 62.
    J.P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, E. Audouard, Phys. Rev. B 71, 165406 (2005)CrossRefADSGoogle Scholar
  63. 63.
    A.N. Volkov, L.V. Zhigilei, J. Phys.: Conf. Ser. 59, 640 (2007)Google Scholar
  64. 64.
    M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Phys. Rev. Lett. 103, 195002 (2009)CrossRefADSGoogle Scholar
  65. 65.
    M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, K.V. Khishchenko, Phys. Chem. Chem. Phys. 15, 3108 (2013)CrossRefGoogle Scholar
  66. 66.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, E. Leveugle, W.H. Duff, D. Thomas, C. Sevilla, S.J. Guy, in Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties, ed. by A. Miotello and P. M. Ossi. Springer Series in Materials Science, vol. 130 (Springer, New York, 2010), pp. 43–79Google Scholar
  67. 67.
    L.V. Zhigilei, E. Leveugle, D.S. Ivanov, Z. Lin, A.N. Volkov, in Nanosized Material Synthesis by Action of High-Power Energy Fluxes on Matter (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2010), pp. 147–220 (in Russian)Google Scholar
  68. 68.
    C. Wu, E.T. Karim, A.N. Volkov, L.V. Zhigilei, in Lasers in Materials Science, ed. by P. M. Ossi, M. Castillejo, L. V. Zhigilei. Springer Series in Materials Science, vol. 191 (Springer, New York, 2014)Google Scholar
  69. 69.
    A. Miotello, R. Kelly, Appl. Phys. A 69, S67 (1999)ADSGoogle Scholar
  70. 70.
    N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001)CrossRefADSGoogle Scholar
  71. 71.
    B.J. Garrison, T.E. Itina, L.V. Zhigilei, Phys. Rev. E 68, 041501 (2003)CrossRefADSGoogle Scholar
  72. 72.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Sov. Phys. JETP 39, 375 (1974)ADSGoogle Scholar
  73. 73.
    L.V. Zhigilei, B.J. Garrison, Mat. Res. Soc. Symp. Proc. 538, 491 (1999)CrossRefGoogle Scholar
  74. 74.
    C. Schafer, H.M. Urbassek, L.V. Zhigilei, B.J. Garrison, Comput. Mater. Sci. 24, 421 (2002)CrossRefGoogle Scholar
  75. 75.
    Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999)CrossRefADSGoogle Scholar
  76. 76.
    G.P. Purja Pun, Y. Mishin, Phil. Mag. 89, 3245 (2009)Google Scholar
  77. 77.
    R.W. Ohse, H. von Tippelskirch, High Temp. High Press. 9, 367 (1977)Google Scholar
  78. 78.
    V. Morel, A. Bultel, B.G. Chéron, Int. J. Thermophys. 30, 1853 (2009)CrossRefADSGoogle Scholar
  79. 79.
    N. Tsakiris, L.J. Lewis, Eur. Phys. J. B 86, 313 (2013)CrossRefADSGoogle Scholar
  80. 80.
  81. 81.
    R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 51, 11433 (1995)CrossRefADSGoogle Scholar
  82. 82.
    K.C. Mills, B.J. Monaghan, B.J. Keene, Int. Mater. Rev. 41, 209 (1996)Google Scholar
  83. 83.
    G. Tas, H.J. Maris, Phys. Rev. B 49, 15049 (1994)CrossRefADSGoogle Scholar
  84. 84.
    J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias, Chem. Phys. 251, 237 (2000)CrossRefADSGoogle Scholar
  85. 85.
    D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000)CrossRefGoogle Scholar
  86. 86.
    B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, Chem. Phys. 299, 285 (2004)CrossRefADSGoogle Scholar
  87. 87.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)Google Scholar
  88. 88.
    M.A. Bhatia, K.N. Solanki, A. Moitra, M.A. Tschopp, Metall. Mater. Trans. A 44, 617 (2013)CrossRefGoogle Scholar
  89. 89.
    J.-M. Savolainen, M.S. Christensen, P. Balling, Phys. Rev. B 84, 193410 (2011)CrossRefADSGoogle Scholar
  90. 90.
    A. Strachan, T. Çağın, W.A. Goddard III, Phys. Rev. B 63, 060103 (2001)Google Scholar
  91. 91.
    G. Paltauf, P.E. Dyer, Chem. Rev. 103, 487 (2003)CrossRefGoogle Scholar
  92. 92.
    E. Leveugle, L.V. Zhigilei, Appl. Phys. A 79, 753 (2004)ADSGoogle Scholar
  93. 93.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S.I. Anisimov, Phys. Rev. Lett. 81, 224 (1998)CrossRefADSGoogle Scholar
  94. 94.
    A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V. Sinitsyn, JETP Lett. 94, 753 (2011)CrossRefADSGoogle Scholar
  95. 95.
    A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V. Sinitsyn, A.F. Bunkin, V.N. Lednev, S.M. Pershin, JETP 116, 347 (2013)Google Scholar
  96. 96.
    A. Vrij, Discuss. Faraday Soc. 42, 23 (1966)CrossRefGoogle Scholar
  97. 97.
    G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Phys. Rev. A 61, 062107 (2000)CrossRefADSGoogle Scholar
  98. 98.
    J.M. Howe, Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid–Vapor, Solid–Liquid and Solid–Solid Interfaces (Wiley, New York, 1997)Google Scholar
  99. 99.
    L.V. Zhigilei, Mater. Res. Soc. Symp. Proc. 677, AA2.1.1–AA2.1.11 (2001)Google Scholar
  100. 100.
    T.E. Itina, K. Gouriet, L.V. Zhigilei, S. Noël, J. Hermann, M. Sentis, Appl. Surf. Sci. 253, 7656 (2007)CrossRefADSGoogle Scholar
  101. 101.
    T.E. Itina, L.V. Zhigilei, J. Phys.: Conf. Ser. 59, 44 (2007)Google Scholar
  102. 102.
    M.I. Zeifman, B.J. Garrison, L.V. Zhigilei, Appl. Surf. Sci. 197–198, 27 (2002)CrossRefGoogle Scholar
  103. 103.
    M.I. Zeifman, B.J. Garrison, L.V. Zhigilei, J. Appl. Phys. 92, 2181 (2002)CrossRefADSGoogle Scholar
  104. 104.
    S. Noël, J. Hermann, T. Itina, Appl. Surf. Sci. 253, 6310 (2007)CrossRefADSGoogle Scholar
  105. 105.
    S. Amoruso, R. Bruzzese, C. Pagano, X. Wang, Appl. Phys. A 89, 1017 (2007)CrossRefADSGoogle Scholar
  106. 106.
    S. Amoruso, R. Bruzzese, X. Wang, J. Xia, Appl. Phys. Lett. 92, 041503 (2008)CrossRefADSGoogle Scholar
  107. 107.
    O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perriere, E. Millon, Appl. Phys. A 76, 319 (2003)CrossRefADSGoogle Scholar
  108. 108.
    N. Jegenyes, J. Etchepare, B. Reynier, D. Scuderi, A. Dos-Santos, Z. Tóth, Appl. Phys. A 91, 385 (2008)CrossRefADSGoogle Scholar
  109. 109.
    Y. Okano, K. Oguri, T. Nishikawa, H. Nakano, Appl. Phys. Lett. 89, 221502 (2006)CrossRefADSGoogle Scholar
  110. 110.
    H. Nakano, K. Oguri, Y. Okano, T. Nishikawa, Appl. Phys. A 101, 523 (2010)CrossRefADSGoogle Scholar
  111. 111.
    I. Apitz, A. Vogel, Appl. Phys. A 81, 329 (2005)CrossRefADSGoogle Scholar
  112. 112.
    T. Donnelly, J.G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, X. Ni, J. Appl. Phys. 108, 043309 (2010)Google Scholar
  113. 113.
    E. Leveugle, L.V. Zhigilei, A. Sellinger, J.M. Fitz-Gerald, Appl. Surf. Sci. 253, 6456 (2007)CrossRefADSGoogle Scholar
  114. 114.
    K.B. Shepard, C.B. Arnold, R.D. Priestley, Appl. Phys. Lett. 103, 123105 (2013)CrossRefADSGoogle Scholar
  115. 115.
    S.-H. Lai, K.-H. Chang, J.-L. Lin, C.-L. Wu, C.-H. Chen, Chem. Phys. Lett. 561–562, 142 (2013)CrossRefGoogle Scholar
  116. 116.
    H.M. Urbassek, Nucl. Instrum. Methods Phys. Res. B 31, 541 (1988)CrossRefADSGoogle Scholar
  117. 117.
    A. Bershadskii, Eur. Phys. J. B 14, 323 (2000)CrossRefADSGoogle Scholar
  118. 118.
    J.A. Aström, R.P. Linna, J. Timonen, P.F. Möller, L. Oddershede, Phys. Rev. E 70, 026104 (2004)CrossRefADSGoogle Scholar
  119. 119.
    G. Timár, J. Blömer, F. Kun, H.J. Herrmann, Phys. Rev. Lett. 104, 095502 (2010)CrossRefADSGoogle Scholar
  120. 120.
    I.S. Bitensky, E.S. Parilis, Nucl. Instrum. Methods Phys. Res. B 21, 26 (1987)Google Scholar
  121. 121.
    L.E. Rehn, R.C. Birtcher, P.M. Baldo, A.W. McCormick, L. Funk, Nucl. Instrum. Methods Phys. Res. B 212, 326 (2003)CrossRefADSGoogle Scholar
  122. 122.
    O. Durand, L. Soulard, J. Appl. Phys. 111, 044901 (2012) Google Scholar
  123. 123.
    N.A. Inogamov, Y.V. Petrov, S.I. Anisimov, A.M. Oparin, N.V. Shaposhnikov, D. von der Linde, J. Meyer-ter-Vehn, JETP Lett. 69, 310 (1999)Google Scholar
  124. 124.
    J. Yang, Y. Zhao, N. Zhang, Y. Liang, M. Wang, Phys. Rev. B 76, 165430 (2007)CrossRefADSGoogle Scholar
  125. 125.
    V.V. Semak, J.G. Thomas, B.R. Campbell, J. Phys. D: Appl. Phys. 37, 2925 (2004)Google Scholar
  126. 126.
    A. Ben-Yakar, A. Harkin, J. Ashmore, R.L. Byer, H.A. Stone, J. Phys. D: Appl. Phys. 40, 1447 (2007)Google Scholar
  127. 127.
    M. von Allmen, J. Appl. Phys. 47, 5460 (1976)CrossRefADSGoogle Scholar
  128. 128.
    B. Liu, Z. Hu, Y. Che, Y. Chen, X. Pan, Appl. Phys. Lett. 90, 044103 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations