Applied Physics A

, Volume 114, Issue 2, pp 309–313 | Cite as

Advantages of blue InGaN light-emitting diodes without an electron-blocking layer by using AlGaN step-like barriers

  • Jian-Yong Xiong
  • Yi-Qin Xu
  • Shu-Wen Zheng
  • Guang-Han Fan
  • Tao Zhang
Rapid communication


With the purpose to increase the uniformity of carrier distribution without sacrificing the enhancement of carrier injection efficiency, the light-emitting diodes (LEDs) without an electron-blocking layer (EBL) by using AlGaN step-like barriers (SLBs) is proposed and investigated numerically. The simulation results show that the enhanced electron confinement and hole injection efficiency are mainly attributed to the mitigated downward band bending induced by polarization field at the interface of the last barrier and EBL and the increased carrier distribution uniformity is due to step-like potential height for carrier of the new designed LEDs. In addition, the distribution of radiative recombination rate and the efficiency droop are markedly improved when the conventional GaN barriers are replaced by AlGaN SLBs and the EBL is removed.


Polarization Field Internal Quantum Efficiency Carrier Distribution Potential Height Spontaneous Emission Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Grant No. 61176043), the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong (Grant Nos. 2010A081002005, 2011A081301003, and 2012A080304016), and Youth funding of South China Normal University (Grant No.2012KJ018).


  1. 1.
    M. Koike, N. Shibata, H. Kato, Y. Takahashi, IEEE J. Sel. Topics Quantum Electron 8, 27 (2002)CrossRefGoogle Scholar
  2. 2.
    T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 84, 855 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    E.F. Schubert, J.K. Kim, Science 308, 1274 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Appl. Phys. Lett. 91, 183507 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    S.H. Han, D.Y. Lee, S.J. Lee, C.Y. Cho, M.K. Kwon, S.P. Lee, D.Y. Noh, D.J. Kim, Y.C. Kim, S.J. Park, Appl. Phys. Lett. 94, 231123 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    A.Y. Kim, W. Gotz, D.A. Steigerwald, J.J. Wiein, M.R. Krames, R.S. Kern, F.M. Steranka, Phys. Status Solidi A 188, 15 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Yang, R. Li, Q. Wei, T. Yu, Y. Zhang, W. Chen, X. Hu, Appl. Phys. Lett. 94, 061120 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    A.A. Efremov, N.I. Bochkareva, R.I. Gorbunov, D.A. Larinovich, Y.T. Rebane, D.V. Tarkhin, Y.G. Shreter, Semiconductors 40, 605 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Y.C. Shen, G.O. Müller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Appl. Phys. Lett. 91, 141101 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    S.F. Chichibu, T. Sota, K. Wada, O. Brandt, K.H. Ploog, S.P. DenBaars, S. Nakamura, Phys. Status Solidi A 183, 91 (2001)Google Scholar
  11. 11.
    J. Iveland, L. Martinelli, J. Peretti, J.S. Speck, C. Weisbuch, Phys. Rev. Lett. 110, 177406 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    C.K. Tan, J. Zhang, X.H. Li, G. Liu, B.O. Tayo, N. Tansu, J. Disp. Technol. 9, 272 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    C.H. Wang, J.R. Chen, C.H. Chiu, H.C. Kuo, Y.L. Li, T.C. Lu, S.C. Wang, IEEE Photon. Technol. Lett. 22, 236 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    H. Zhao, G. Liu, X.H. Li, G.S. Huang, J.D. Poplawsky, S.T. Penn, V. Dierolf, N. Tansu, Appl. Phys. Lett. 95, 061104 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    J.Y. Chang, M.C. Tsai, Y.K. Kuo, Opt. Lett. 35, 1368 (2010) Google Scholar
  16. 16.
    J.Y. Xiong, Y.Q. Xu, F. Zhao, J.J. Song, B.B. Ding, S.W. Zheng, T. Zhang, G.H. Fan, Chin. Phys. B 22, 108505 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Y.K. Kuo, J.Y. Chang, M.C. Tsai, Opt. Lett. 35, 3285 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Y.Y. Zhang, Y.A. Yin, Appl. Phys. Lett. 99, 221103 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    J.Y. Xiong, Y.Q. Xu, B.B. Ding, F. Zhao, J.J. Song, S.W. Zheng, L. Zhang, T. Zhang, G.H. Fan, Appl. Phys. A 113, 315 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    T. Lu, S. Li, C. Liu, K. Zhang, Y. Xu, J. Tong, L. Wu, H. Wang, X. Yang, Y. Yin, G. Xiao, Y. Zhou, Appl. Phys. Lett. 100, 141106 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J.P. Liu, J.H. Ryou, R.D. Dupuis, J. Han, G.D. Shen, H.B. Wang, Appl. Phys. Lett. 93, 021102 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    APSYS by Crosslight Software Inc., Burnaby, Canada. Available at
  23. 23.
    V. Fiorentini, F. Bernardini, O. Ambacher, Appl. Phys. Lett. 80, 1204 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jian-Yong Xiong
    • 1
  • Yi-Qin Xu
    • 2
  • Shu-Wen Zheng
    • 1
  • Guang-Han Fan
    • 1
  • Tao Zhang
    • 1
  1. 1.Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and TechnologySouth China Normal UniversityGuangzhou China
  2. 2.Guangdong General Research Institute for Industrial TechnologyGuangzhou China

Personalised recommendations