Applied Physics A

, Volume 114, Issue 2, pp 291–295 | Cite as

Work function increase of transparent conductive electrodes by solution processed electron acceptor molecular monolayers

  • Mauro CastellaniEmail author
  • Stefanie Winkler
  • Benjamin Bröker
  • Martin Baumgarten
  • Klaus Müllen
  • Norbert Koch
Rapid Communication


We show how the work function of transparent conductive oxide surfaces can be increased by more than 1 eV by solution-depositing strong electron acceptor monolayers comprising tetrafluoro-tetracyanoquinodimethane (F4TCNQ) or hexaazatriphenylene-hexacarbonitrile (HATCN). The effects of ambient atmosphere on the work function are investigated by comparing Kelvin probe measurements in air and ultraviolet photoelectron spectroscopy in ultrahigh vacuum. In this way, important technological issues related to the influence of ambient moisture on electrode properties are elucidated.


Work Function Lower Unoccupied Molecular Orbital Acceptor Molecule Monolayer Formation Ultraviolet Photoelectron Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank S. Janietz and B. Gruber for granting access to PYS at the Fraunhofer-IAP (Potsdam-Golm/ Germany), and to J. P. Rabe for granting access to the UPS/XPS setup. This work was supported by the DFG (SPP1355 and SFB951), and the Helmholtz-Energie-Allianz “Hybrid-Photovoltaik”.


  1. 1.
    J. Kruger, U. Bach, M. Grätzel, Adv. Mater. 12, 447 (2000)CrossRefGoogle Scholar
  2. 2.
    F. Nüesch, M. Carrara, L. Zuppiroli, Langmuir 19, 4871 (2003)CrossRefGoogle Scholar
  3. 3.
    L. Zuppiroli, L. Si-Ahmed, K. Kamaras, F. Nüesch, M.N. Bussac, D. Ades, A. Siove, E. Moons, M. Grätzel, Eur. Phys. J. B 11, 505 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    C.C. Wu, C.I. Wu, J.C. Sturm, A. Kahn, Appl. Phys. Lett. 70, 1348 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    T. Osada, T. Kugler, P. Broms, W.R. Salaneck, Synth. Met. 96, 77 (1998)CrossRefGoogle Scholar
  6. 6.
    J.S. Kim, M. Granström, R.H. Friend, N. Johansson, W.R. Salaneck, R. Daik, W.J. Feast, F. Cacialli, J. Appl. Phys. 84, 6859 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    F. Nüesch, K. Kamarás, L. Zuppiroli, Chem. Phys. Lett. 283, 194 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    M. Castellani, I. Salzmann, P. Bugnon, S. Yu, M. Oehzelt, N. Koch, Appl. Phys. A 97, 1 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    B. Bröker, O.T. Hofmann, G.M. Rangger, P. Frank, R.-P. Blum, R. Rieger, L. Venema, A. Vollmer, K. Müllen, J.P. Rabe, A. Winkler, P. Rudolf, E. Zojer, N. Koch, Phys. Rev. Lett. 104, 246805 (2010) Google Scholar
  10. 10.
    L.S. Liao, W.K. Slusarek, T.K. Hatwar, M.L. Ricks, D.L. Comfort, Adv. Mater. 20, 324 (2008)CrossRefGoogle Scholar
  11. 11.
    J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett. 73, 729 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, Appl. Phys Lett. 78, 410 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    W. Gao, A. Kahn, Appl. Phys. Lett. 79, 4040 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    J. Blochwitz, T. Fritz, M. Pfeiffer, K. Leo, D.M. Alloway, P.A. Lee, N.R. Armstrong, Org. Electron. 2, 97 (2001)CrossRefGoogle Scholar
  15. 15.
    W. Gao, A. Kahn, J. Appl. Phys. 94, 359 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    G.M. Rangger, O.T. Hofmann, L. Romaner, G. Heimel, B. Bröker, R.-P. Blum, R.L. Johnson, N. Koch, E. Zojer, Phys. Rev. B 79, 165306 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    J. Frisch, H. Glowatzki, S. Janietz, N. Koch, Org. Electron. 10, 1459 (2009)CrossRefGoogle Scholar
  18. 18.
    I.D. Baikie, S. Mackenzie, P.J.Z. Estrup, J.A. Meyer, Rev. Sci. Instrum. 62, 1326 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    S. Rentenberger, A. Vollmer, E. Zojer, R. Schennach, N. Koch, J. Appl. Phys. 100, 053701 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    K. Christmann, Surface Physical Chemistry (Steinkopff/ Darmstadt, Springer, New York, 1991)Google Scholar
  21. 21.
    J. Topping, Proc. Roy. Soc. Lond. A 114, 67 (1927)ADSCrossRefGoogle Scholar
  22. 22.
    L. Romaner, G. Heimel, C. Ambrosch-Draxl, E. Zojer, Adv. Funct. Mater. 18, 3999 (2008)CrossRefGoogle Scholar
  23. 23.
    L. Romaner, G. Heimel, J.-L. Brédas, A. Gerlach, F. Schreiber, R.L. Johnson, J. Zegenhagen, S. Duhm, N. Koch, E. Zojer, Phys. Rev. Lett. 99, 256801 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mauro Castellani
    • 1
    Email author
  • Stefanie Winkler
    • 2
  • Benjamin Bröker
    • 1
  • Martin Baumgarten
    • 3
  • Klaus Müllen
    • 3
  • Norbert Koch
    • 1
    • 2
  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Helmholtz-Zentrum Berlin für Materialien und Energie GmbHBerlinGermany
  3. 3.Max Planck Institut für PolymerforschungMainzGermany

Personalised recommendations