Advertisement

Applied Physics A

, Volume 115, Issue 2, pp 427–431 | Cite as

Atomistic approach for simulating plasmons in nanostructures

  • Arto Sakko
  • Tuomas P. Rossi
  • Jussi Enkovaara
  • Risto M. Nieminen
Article

Abstract

Recent experimental and theoretical works have demonstrated that quantum mechanical effects play an important role in materials design of some novel nano-plasmonic materials. In this work, electronic structure calculations are used to study these effects for the optical properties of metal nanostructures and small flakes of graphene. Their optical response is shown to depend on their exact atomic composition, and their similarities (size-dependent resonance frequency) and differences (metallic vs. semiconducting material) are discussed.

The open-source computer code GPAW is used for the simulations, which can be done for systems of thousands of valence electrons. The calculations automatically include quantum effects such as tunneling, nonlocal response, and molecular orbital hybridization.

Keywords

Electronic Structure Calculation Graphene Nanoribbon Graphene Flake Quantum Mechanical Effect Quantum Mechanical Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank the Academy of Finland (Centres of Excellence Program) for the financial support, and Aalto Science-IT project and Finnish IT Center for Science (CSC) for computational resources.

References

  1. 1.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, 2005) Google Scholar
  2. 2.
    J.A. Scholl, A.L. Koh, J.A. Dionne, Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    F.J.G. de Abajo, Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 112, 17983–17987 (2008) CrossRefGoogle Scholar
  4. 4.
    J. Zuloaga, E. Prodan, P. Nordlander, Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    J.M. McMahon, S.K. Gray, G.C. Schatz, Nonlocal optical response of metal nanostructures with arbitrary shape. Phys. Rev. Lett. 103, 097403 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Morton, D.W. Silverstein, L. Jensen, Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 111, 3962 (2011) CrossRefGoogle Scholar
  7. 7.
    K.J. Savage, M.H. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, J.J. Baumberg, Revealing the quantum regime in tunnelling plasmonics. Nature 471, 574 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    D.C. Marinica, A.K. Kazansky, P. Nordlander, J. Aizpurua, A.G. Borisov, Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Morton, L. Jensen, A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption. J. Chem. Phys. 135, 134103 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Gao, D. Neuhauser, Dynamical quantum-electrodynamics embedding: combining time-dependent density functional theory and the near-field method. J. Chem. Phys. 137, 074113 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    J.L. Payton, S.M. Morton, J.E. Moore, L. Jensen, A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy. J. Chem. Phys. 136, 214103 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    J. Yan, Z. Yuan, S. Gao, End and central plasmon resonances in linear atomic chains. Phys. Rev. Lett. 98, 216602 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Atomically precise buttom-up fabrication of graphene nanoribbons. Nature 466, 470 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004) CrossRefGoogle Scholar
  15. 15.
    E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  16. 16.
    M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio (eds.), Fundamentals of Time-Dependent Density Functional Theory (Springer, Heidelberg, 2012) Google Scholar
  17. 17.
    J. Yan, J.J. Mortensen, K.W. Jacobsen, K.S. Thygesen, Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces. Phys. Rev. B 83, 245122 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    M. Walter, H. Häkkinen, L. Lehtovaara, M. Puska, J. Enkovaara, C. Rostcaard, J.J. Mortensen, Time-dependent density-functional theory in the projector augmented-wave method. J. Chem. Phys. 128, 244101 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    J. Enkovaara, C. Rostgaard, J.J. Mortensen et al., Electronic structure calculations with gpaw: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010) ADSCrossRefGoogle Scholar
  20. 20.
  21. 21.
    P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  22. 22.
    C. Cocchi, D. Prezzi, A. Ruini, M.J. Caldas, E. Molinari, Optical properties and charge-transfer excitations in edge-functionalized all-graphene nanojunctions. J. Phys. Chem. Lett. 2, 1315 (2011) CrossRefGoogle Scholar
  23. 23.
    C. Cocchi, D. Prezzi, A. Ruini, E. Benassi, M.J. Caldas, S. Corni, E. Molinari, Optical excitations and field enhancement in short graphene nanoribbons. J. Phys. Chem. Lett. 3, 924–929 (2012) CrossRefGoogle Scholar
  24. 24.
    C. Xia, C. Yin, V.V. Kresin, Photoabsorption by volume plasmons in metal nanoclusters. Phys. Rev. Lett. 102, 156802 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    A. Sakko, A. Rubio, M. Hakala, K. Hämäläinen, Time-dependent density functional approach for the calculation of inelastic X-ray scattering spectra of molecules. J. Chem. Phys. 133, 174111 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    D.E. Chang, A.S. Sorensen, P.R. Hemmer, M.D. Lukin, Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    G.T. Bae, C.M. Aikens, TDDFT and CIS studies of optical properties of dimers of silver tetrahedra. J. Phys. Chem. A 116, 8260 (2012) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arto Sakko
    • 1
  • Tuomas P. Rossi
    • 1
  • Jussi Enkovaara
    • 1
  • Risto M. Nieminen
    • 1
  1. 1.COMP Centre of Excellence, Department of Applied PhysicsAalto UniversityEspooFinland

Personalised recommendations