Advertisement

Applied Physics A

, Volume 114, Issue 3, pp 997–1002 | Cite as

Broadband effective magnetic response of inorganic dielectric resonator-based metamaterial for microwave applications

  • R. Yahiaoui
  • U.-C. Chung
  • S. N. Burokur
  • A. de Lustrac
  • C. Elissalde
  • M. Maglione
  • V. Vigneras
  • P. Mounaix
Article

Abstract

A single-sized dielectric cylinder-based metamaterial is fabricated from TiO2 nanoparticles, using a bottom-up approach. The sub-elements constituting the metalayer are embedded in a nonmagnetic transparent host matrix in the microwave regime and arranged in a square lattice. We demonstrate numerically and experimentally a broadband magnetic activity. The key feature to achieve this performance remains in the high aspect ratio of the metamaterial building blocks. This is a very promising step towards complex electromagnetic functions, involving low-cost metamaterials with simple fabrication.

Keywords

Electromagnetically Induce Transparency Dielectric Resonator Split Ring Resonator Negative Refractive Index Electromagnetic Plane Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work has been performed in the framework of the project: “GIS-AMA-SAMM”. The authors would like to thank M. Eddie Maillard for manufacturing the Rohacell® foam matrix, with the LOMA mechanical facilities.

References

  1. 1.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968) ADSCrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, L. Li, Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    R. Yahiaoui, H. Němec, P. Kužel, F. Kadlec, C. Kadlec, P. Mounaix, Broadband dielectric terahertz metamaterials with negative permeability. Opt. Lett. 34, 3541 (2009) CrossRefGoogle Scholar
  7. 7.
    H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, P. Mounaix, Tunable terahertz metamaterials with negative permeability. Phys. Rev. B 79, 241108 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    T. Lepetit, E. Akmansoy, J.-P. Ganne, Experimental measurement of negative index in an all-dielectric metamaterial. Appl. Phys. Lett. 95, 121101 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, P. Mounaix, Resonant magnetic response of TiO2 microspheres at terahertz frequencies. Appl. Phys. Lett. 100, 061117 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    R. Yahiaoui, H. Němec, C. Kadlec, F. Kadlec, P. Kužel, U.-C. Chung, C. Elissalde, M. Maglione, P. Mounaix, TiO2 microspheres-based metamaterials exhibiting effective magnetic response in the terahertz regime. Appl. Phys. A 109, 891 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    T. Ueda, N. Michishita, M. Akiyama, T. Itoh, Dielectric-resonator-based composite right/left-handed transmission lines and their application to leaky wave antenna. IEEE Trans. Microw. Theory Tech. 56, 2259 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    K. Haines, T. Neuberger, M. Lanagan, E. Semouchkina, A.G. Webb, High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging. J. Magn. Reson. 200, 349 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    D.P. Gaillot, C. Croënne, D. Lippens, An all-dielectric route for terahertz cloaking. Opt. Express 16, 3986 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    E. Semouchkina, D.H. Werner, G.B. Semouchkin, C. Pantano, An infrared invisibility cloak composed of glass. Appl. Phys. Lett. 96, 233503 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    C.K. Chen, Y.C. Lai, Y.H. Yang, C.Y. Chen, T.J. Yen, Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials. Opt. Express 20, 6952 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    O.G. Vendik, M.S. Gashinova, Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix, in Proc. Eur. Microw. Conf, (2004), pp. 1209–1212 Google Scholar
  17. 17.
    K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, M. Hangyo, Terahertz metamaterials composed of TiO2 cube arrays, in Proc. Metamaterials Conf, (2008), pp. 777–779 Google Scholar
  18. 18.
    Y.C. Lai, C.K. Chen, Y.H. Yang, T.J. Yen, Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators. Opt. Express 20, 2876 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    S. O’Brien, J.B. Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals. J. Phys. Condens. Matter 14, 6383 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    T. Koschny, P. Markos, D.R. Smith, C.M. Soukoulis, Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phys. Rev. E 68, 065602 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Yuan, C. Bingham, T. Tyler, S. Palit, T.H. Hand, W.J. Padilla, N.M. Jokerst, S.A. Cummer, A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators. Appl. Phys. Lett. 93, 191110 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    H. Li, L.H. Yuan, B. Zhou, X.P. Shen, Q. Cheng, T.J. Cui, Ultrathin multiband gigahertz metamaterial absorbers. J. Appl. Phys. 110, 014909 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    S. Hrabar, I. Krois, A. Kiricenko, Towards active dispersionless ENZ metamaterial for cloaking applications. Metamaterials 4, 89 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    M. Barbuto, A. Monti, F. Bilotti, A. Toscano, Design of a non-Foster actively loaded SRR and application in metamaterial-inspired components. IEEE Trans. Antennas Propag. 61, 1219 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    K.Z. Rajab, Y. Hao, D. Bao, C.G. Parini, J. Vazquez, M. Philippakis, Stability of active magnetoinductive metamaterials. J. Appl. Phys. 108, 054904 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    C. Yan, Y. Cui, Q. Wang, S. Zhuo, Negative refractive indices of a confined discrete fishnet metamaterial at visible wavelengths. J. Opt. Soc. Am. B 25, 1815 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    J. Zhou, L. Zhang, G. Tuttle, T. Koschny, C.M. Soukoulis, Negative index materials using simple short wire pairs. Phys. Rev. B 73, 041101(R) (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Yahiaoui
    • 1
  • U.-C. Chung
    • 2
  • S. N. Burokur
    • 4
    • 5
  • A. de Lustrac
    • 4
    • 5
  • C. Elissalde
    • 2
  • M. Maglione
    • 2
  • V. Vigneras
    • 3
  • P. Mounaix
    • 6
  1. 1.XLIM, Univ. Limoges, CNRSUMR 6172BriveFrance
  2. 2.ICMCB, Univ. Bordeaux, CNRSUPR 9048Pessac CedexFrance
  3. 3.IMS, Univ. Bordeaux, CNRSUMR 5218Pessac CedexFrance
  4. 4.IEF, Univ. Paris-Sud, CNRSUMR 8622Orsay CedexFrance
  5. 5.Univ. Paris-OuestVille d’AvrayFrance
  6. 6.LOMA, Univ. Bordeaux, CNRSUMR 5798Talence CedexFrance

Personalised recommendations