Advertisement

Applied Physics A

, Volume 115, Issue 2, pp 637–643 | Cite as

Selective mode suppression in microstrip differential lines by means of electric-LC (ELC) and magnetic-LC (MLC) resonators

  • J. Naqui
  • M. Durán-Sindreu
  • F. Martín
Article

Abstract

In this paper, it is demonstrated that the so-called electric-LC (ELC) resonators, and their dual counterparts, the magnetic-LC (MLC) resonators, are useful for the selective suppression of either the differential or the common mode in microstrip differential lines. The key point to mode suppression is the alignment of the resonator with the electric (differential mode) or magnetic (common mode) wall of the line. It is shown that by simply rotating the resonators 90 we can selectively choose the suppressed mode in the vicinity of the resonator’s fundamental resonance frequency. The theory is validated through full-wave electromagnetic simulation, the lumped element equivalent circuit models of the proposed structures and experimental data.

Keywords

Symmetry Plane Ground Plane Common Mode Magnetic Coupling Equivalent Circuit Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been supported by MICIIN-Spain (projects TEC2010-17512, CSD2008-00066, and TEC2011-13615-E) and by AGAUR-Generalitat de Catalunya, through project 2009SGR-421. Jordi Naqui feels also indebted to MECD (Spain) for supporting his work through the FPU grant AP2010-0431.

References

  1. 1.
    J.B. Pendry, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    F. Falcone, T. Lopetegi, J.D. Baena, R. Marqués, F. Martín, M. Sorolla, Effective negative-ε stop-band microstrip lines based on complementary split ring resonators. IEEE Microw. Wirel. Compon. Lett. 14, 280–282 (2004) CrossRefGoogle Scholar
  3. 3.
    R. Marqués, F. Martín, M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Wiley, New York, 2008) Google Scholar
  4. 4.
    J. Naqui, M. Durán-Sindreu, F. Martín, Selective mode suppression in coplanar waveguides using metamaterial resonators. Appl. Phys. A, Mater. Sci. Process. 109, 1053–1058 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    J. Naqui, A. Fernández-Prieto, M. Durán-Sindreu, F. Mesa, J. Martel, F. Medina, F. Martín, Common mode suppression in microstrip differential lines by means of complementary split ring resonators: theory and applications. IEEE Trans. Microw. Theory Tech. 60, 3023–3034 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    R. Marques, F. Medina, R. Rafii-El-Idrissi, Role of bi-anisotropy in negative permeability and left handed metamaterials. Phys. Rev. B 65, 144441 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    R. Marqués, F. Mesa, J. Martel, F. Medina, Comparative analysis of edge and broadside couple split ring resonators for metamaterial design. Theory and experiment. IEEE Trans. Antennas Propag. 51, 2572–2582 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    J. Naqui, M. Durán-Sindreu, F. Martín, Modeling split ring resonator (SRR) and complementary split ring resonator (CSRR) loaded transmission lines exhibiting cross polarization effects. IEEE Antennas Wirel. Propag. Lett. 12, 178–181 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    D. Schurig, J.J. Mock, D.R. Smith, Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    F. Martín, F. Falcone, J. Bonache, R. Marqués, M. Sorolla, Split ring resonator based left handed coplanar waveguide. Appl. Phys. Lett. 83, 4652–4654 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    F. Aznar, J. Bonache, F. Martín, Improved circuit model for left handed lines loaded with split ring resonators. Appl. Phys. Lett. 92, 043512 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    F. Aznar, M. Gil, J. Bonache, L. Jelinek, J.D. Baena, R. Marqués, F. Martín, Characterization of miniaturized metamaterial resonators coupled to planar transmission lines through parameter extraction. J. Appl. Phys. 104, 114501 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    J. Bonache, M. Gil, I. Gil, J. Garcia-García, F. Martín, On the electrical characteristics of complementary metamaterial resonators. IEEE Microw. Wirel. Compon. Lett. 16, 543–545 (2006) CrossRefGoogle Scholar
  14. 14.
    J. Naqui, M. Durán-Sindreu, F. Martín, Transmission lines loaded with bisymmetric resonators and applications, in IEEE MTT-S Int. Microwave Symp., Seattle USA, June 2013 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.GEMMA/CIMITEC, Departament d’Enginyeria ElectrònicaUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations