Advertisement

Applied Physics A

, Volume 115, Issue 4, pp 1365–1370 | Cite as

Structure and properties of CaNb2O6:Sm3+ thin films by pulsed laser deposition

  • Yinzhen Wang
  • Liaolin Zhang
  • Renping Cao
  • Qing Miao
  • Jianrong Qiu
Article

Abstract

CaNb2O6:Sm3+ films were prepared on quartz glass and α-Al2O3(001) substrates by pulsed laser deposition. The structural, morphological, and optical properties of the CaNb2O6:Sm3+ films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), emission-scan electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL) measurements. The results show that the structure and properties of CaNb2O6:Sm3+ films were dependent on substrates. The CaNb2O6:Sm3+ films on Al2O3(0001) substrate have better crystallinity. The full-width at half-maximum (FWHM) of (131) peak are 0.45 and 0.32 for the CaNb2O6:Sm3+ film on glass and Al2O3(001), respectively. The crystallite size of CaNb2O6:Sm3+ films grown on glass and Al2O3(001) was about 8.22 and 9.98 nm, respectively. The oxidation state of the Sm element on the films was Sm3+ state. The photoluminescence (PL) spectra were measured at room temperature, the CaNb2O6:Sm3+ films on Al2O3(001) substrate have a better PL intensity, the identified emission bands were by the intra 4f transitions of Sm3+ from the excited level to the lower levels at 567 nm for 4G5/26H5/2 transition, at 609 nm for 4G5/26H7/2 transition, and at 657 nm for 4G5/26H9/2 transition.

Keywords

Atomic Force Microscopy Pulse Laser Deposition Quartz Glass Good Crystal Quality Calcium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (No. 2012M511801), National Nature Science Foundation of China (No. 51072054, 51172078 and 51132004) and Science and technology project in Guangzhou (No. 2013J4100045).

References

  1. 1.
    R.C. Pullar, J.D. Breeze, J. Am. Ceram. Soc. 88, 2466 (2005) CrossRefGoogle Scholar
  2. 2.
    H.J. Lee, K.S. Hong, S. Kim, Mater. Res. Bull. 32, 847 (1997) CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, C. Liu, G. Pang, S. Jiao, S. Zhu, D. Wang, D. Liang, S. Feng, Eur. J. Inorg. Chem. 2010, 1275 (2010) CrossRefGoogle Scholar
  4. 4.
    I.S. Cho, S.T. Bae, D.K. Yim, D.W. Kim, K.S. Hong, J. Am. Ceram. Soc. 92, 506 (2009) CrossRefGoogle Scholar
  5. 5.
    A.A. Ballman, S.P.S. Porto, A. Yariv, J. Appl. Phys. 34, 3155 (1963) ADSCrossRefGoogle Scholar
  6. 6.
    G.Q. Xie, L.J. Qian, X.D. Xu, Y. Cheng, Z.W. Zhao, D.Y. Tang, J. Zhang, W.D. Tan, J. Xu, Laser Phys. 20, 1331 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    D.Z. Li, X.D. Xu, C.W. Xu, L.J. Zhang, D.Y. Tang, Y. Cheng, J. Xu, Opt. Lett. 36, 3888 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    R. de Almeida Silva, J. Cryst. Growth 262, 246 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    A.S.S. Decamargo, R.A. Silva, J.P. Andreeta, L.A.O. Nunes, Appl. Phys. B 80, 497 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    D. Van der Voort, J.M.E. De Ruk, G. Blasse, Phys. Status Solidi A 135, 135 (1993) Google Scholar
  11. 11.
    J. Huang, L. Zhou, X. He, F. Gong, Chin. J. Chem. 29, 441 (2011) CrossRefGoogle Scholar
  12. 12.
    A. Wachtel, J. Eletrochem. Soc. 111, 534 (1964) CrossRefGoogle Scholar
  13. 13.
    X.Z. Xiao, B. Yan, J. Alloys Compd. 456, 447 (2008) CrossRefGoogle Scholar
  14. 14.
    H.K. Yang, J.W. Chung, B.K. Moon, B.C. Choi, J.H. Jeong, S. Yi, Appl. Phys. A 92, 337 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    J.C. Park, H.K. Moon, D.K. Kim, S.H. Byeon, B.C. Kim, K.S. Suh, Appl. Phys. Lett. 77, 2162 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    E. Husson, Y. Repelin, N.Q. Dao, H. Brusset, Spectrochim. Acta A 33, 995 (1977) ADSCrossRefGoogle Scholar
  17. 17.
    B. Demri, D. Muster, J. Mater. Process. Technol. 55, 311 (1995) CrossRefGoogle Scholar
  18. 18.
    P. Steiner, H.Z. Hoechst, Physik B 35, 51 (1979) CrossRefGoogle Scholar
  19. 19.
    M.K. Bahl, J. Phys. Chem. Solids 36, 485 (1975) ADSCrossRefGoogle Scholar
  20. 20.
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minn. 55344 (1979) Google Scholar
  21. 21.
    Y. Mori, S. Tanemura, Appl. Surf. Sci. 253, 3856 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    X. Xiao, B. Yan, J. Non-Cryst. Solids 351, 3634 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    N. Kumada, N. Kinomiura, J. Solid State Chem. 147, 671 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    L. Shi, Y. Huang, H.J. Seo, J. Phys. Chem. A 114, 6927 (2010) CrossRefGoogle Scholar
  25. 25.
    B.R. Judd, Phys. Rev. 127, 750 (1962) ADSCrossRefGoogle Scholar
  26. 26.
    G.S. Ofelt, J. Chem. Phys. 37, 511 (1962) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Optical Communication Materials and State Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouChina
  2. 2.School of Physics & Telecommunication EngineeringSouth China Normal UniversityGuangzhouPR China

Personalised recommendations