Advertisement

Applied Physics A

, Volume 114, Issue 1, pp 45–50 | Cite as

Generation and patterning of Si nanoparticles by femtosecond laser pulses

  • Urs Zywietz
  • Carsten Reinhardt
  • Andrey B. Evlyukhin
  • Tobias Birr
  • Boris N. Chichkov
Invited paper

Abstract

The unique optical properties of nanoparticles are highly sensitive in respect to particle shapes, sizes, and localization on a sample. This demands for a fully controlled fabrication process. The use of femtosecond laser pulses to generate and transfer nanoparticles from a bulk target towards a collector substrate is a promising approach. This process allows a controlled fabrication of spherical nanoparticles with a very smooth surface. Several process parameters can be varied to achieve the desired nanoparticle characteristics. In this paper, the influence of two of these parameters, i.e. the applied pulse energy and the laser beam shape, on the generation of Si nanoparticles from a bulk Si target are studied in detail. By changing the laser intensity distribution on the target surface one can influence the dynamics of molten material inducing its flow to the edges or to the center of the focal spot. Due to this dynamics of molten material, a single femtosecond laser pulse with a Gaussian beam shape generates multiple spherical nanoparticles from a bulk Si target. The statistical properties of this process, with respect to number of generated nanoparticles and laser pulse energy are investigated. We demonstrate for the first time that a ring-shaped intensity distribution on the target surface results in the generation of a single silicon nanoparticle with a controllable size. Furthermore, the generated silicon nanoparticles presented in this paper show strong electric and magnetic dipole resonances in the visible and near-infrared spectral range. Theoretical simulations as well as optical scattering measurements of single silicon nanoparticles are discussed and compared.

Keywords

Femtosecond Laser Pulse Laser Pulse Energy Silicon Nanoparticles Liquid Silicon Molten Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge financial support of this work by the priority program SPP1391 “Ultrafast Nanooptics” and SPP1327 “Optical generation of Sub-100 nm structures for biomedical and technical applications,” the project CH 179/20-1, and the Collaborative Research Center/Transregio 123 Planar Optronic Systems of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), as well as the Laboratory of Nano and Quantum Engineering (LNQE), Hannover. A.B.E. acknowledges support by the Russian Foundation for Basic Research, Grant No. 12-02-00528. The authors further acknowledge support by the Center for Quantum Engineering and Space-Time Research (QUEST).

References

  1. 1.
    M. Faraday, Philos. Trans. R. Soc. Lond. A 147, 145 (1857) Google Scholar
  2. 2.
    C. Sönnichsen, B.M. Reinhard, J. Liphardt, A.P. Alivisatos, Nat. Biotechnol. 23, 741 (2005) CrossRefGoogle Scholar
  3. 3.
    S. Davey, Nat. Chem. (2010) Google Scholar
  4. 4.
    J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, L. Yang, Nat. Photonics 4(1), 46 (2009) CrossRefADSGoogle Scholar
  5. 5.
    M.T. Stephan, J.J. Moon, S.H. Um, A. Bershteyn, D.J. Irvine, Nat. Med. 16(9), 1035 (2010) CrossRefGoogle Scholar
  6. 6.
    N.C. Bigall, A. Eychmüller, Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 368(1915), 1385 (2010) CrossRefADSGoogle Scholar
  7. 7.
    C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109(29), 13857 (2005) CrossRefGoogle Scholar
  8. 8.
    Y. Sun, Y. Xia, Science 298(5601), 2176 (2002) CrossRefADSGoogle Scholar
  9. 9.
    C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105(24), 5599 (2001) CrossRefGoogle Scholar
  10. 10.
    G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Nano Lett. 7(7), 1947 (2007) CrossRefADSGoogle Scholar
  11. 11.
    A.I. Kuznetsov, A.B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, B.N. Chichkov, J. Opt. Soc. Am. B 26, B130 (2009) CrossRefGoogle Scholar
  12. 12.
    A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, B.N. Chichkov, Phys. Rev. B 82(4), 045404 (2010) CrossRefADSGoogle Scholar
  13. 13.
    A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Phys. Rev. B 84(23), 235429 (2011) CrossRefADSGoogle Scholar
  14. 14.
    A.I. Kuznetsov, A.E. Miroshnichenko, Y.H. Fu, J. Zhang, B. Luk’yanchuk, Sci. Rep. 2 (2012) Google Scholar
  15. 15.
    A.B. Evlyukhin, S.M. Novikov, U. Zywietz, R.L. Eriksen, C. Reinhardt, S.I. Bozhevolnyi, B.N. Chichkov, Nano Lett. 12(1), 3749 (2012) CrossRefADSGoogle Scholar
  16. 16.
    J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74(1), 19 (2002) CrossRefADSGoogle Scholar
  17. 17.
    S. Hardy, J. Cryst. Growth 69(2), 456 (1984) CrossRefADSGoogle Scholar
  18. 18.
    A. Borowiec, M. Mackenzie, G. Weatherly, H. Haugen, Appl. Phys. A 76(2), 201 (2003) CrossRefADSGoogle Scholar
  19. 19.
    D.T. Papageorgiou, Phys. Fluids 7, 1529 (1995) CrossRefzbMATHMathSciNetADSGoogle Scholar
  20. 20.
    J. Eggers, arXiv preprint physics/0111003 (2001)
  21. 21.
    H.C. Hulst, H. Van De Hulst, Light Scattering by Small Particles (Courier Dover Publications, New York, 1957) Google Scholar
  22. 22.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Vch, New York, 2008) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Urs Zywietz
    • 1
  • Carsten Reinhardt
    • 1
  • Andrey B. Evlyukhin
    • 1
  • Tobias Birr
    • 1
  • Boris N. Chichkov
    • 1
  1. 1.Laser Zentrum Hannover e.V.HannoverGermany

Personalised recommendations