Advertisement

Applied Physics A

, Volume 115, Issue 1, pp 203–211 | Cite as

Grain boundary diffusion induced reaction layer formation in Fe/Pt thin films

  • G. L. KatonaEmail author
  • I. A. Vladymyrskyi
  • I. M. Makogon
  • S. I. Sidorenko
  • F. Kristály
  • L. Daróczi
  • A. Csik
  • A. Liebig
  • G. Beddies
  • M. Albrecht
  • D. L. Beke
Article

Abstract

The solid-state reaction in Pt(15 nm)/Fe(15 nm) and Pt(15 nm)/Ag(10 nm)/Fe(15 nm) thin films after post-annealing at 593 K and 613 K for different annealing times has been studied. The structural properties of these samples were investigated by various methods including depth profiling with secondary neutral mass spectrometry, transmission electron microscopy, and X-ray diffraction. It is shown that after annealing at the above temperatures where the bulk diffusion processes are still frozen, homogeneous reaction layers of FePt and FePt with about 10 at.% Ag, respectively, have been formed. Corresponding depth profiles of the element concentrations revealed strong evidence that the formation mechanism is based on a grain boundary diffusion induced solid-state reaction in which the reaction interfaces sweep perpendicularly to the original grain boundary. Interestingly, X-ray diffraction indicated that in both thin-film systems after the solid-state reaction the ordered L10 FePt phase, which is the requested phase for future magnetic data storage applications, is also present.

Keywords

Reaction Layer FePt Longe Annealing Time FePt Film Alloyed Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge the support of the Hungarian Scientific Research Fund (OTKA) through Grant CK 80126 and by the TÁMOP-4.2.2.A-11/1/KONV-2012-0036 projects. These projects are implemented through the New Hungary Development Plan co-financed by the European Social Fund and the European Regional Development Fund. This research was also supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of the TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program’ (author G.L. Katona). Support from the Hungarian–Chinese bilateral project, TÉT_12_CN-1-2012-0036, is also acknowledged.

References

  1. 1.
    G. Schmitz, D. Baither, M. Kasparzak, T.H. Kim, B. Krause, Scr. Mater. 63, 484 (2010) CrossRefGoogle Scholar
  2. 2.
    V.M. Koshevich, A.N. Gladkikh, M.V. Karpovskyi, V.N. Klimenko, Interface Sci. 2, 261 (1994) Google Scholar
  3. 3.
    M. Kajihara, Scr. Mater. 54, 1767 (2006) CrossRefGoogle Scholar
  4. 4.
    O. Penrose, Acta Mater. 52, 3901 (2004) CrossRefGoogle Scholar
  5. 5.
    D.N. Yoon, Rev. Adv. Mater. Sci. 19, 43 (1989) ADSCrossRefGoogle Scholar
  6. 6.
    S. Inomata, M.O.M. Kajihara, J. Mater. Sci. 46, 2410 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    F. Hartung, G. Schmitz, Phys. Rev. B 64, 245418 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    D. Baiter, T.H. Kim, G. Schmitz, Scr. Mater. 58, 99 (2008) CrossRefGoogle Scholar
  9. 9.
    J. Sheng, U. Welzer, E.J. Mittemeijer, Suppl. Issues Z. Kristallogr. 30, 247 (2009) CrossRefzbMATHGoogle Scholar
  10. 10.
    T. Takenaka, M. Kajihara, Mater. Trans. 47, 822 (2006) CrossRefGoogle Scholar
  11. 11.
    J. Chakraborty, U. Welzer, E.J. Mittemeijer, J. Appl. Phys. 103, 113512 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    G. Molnár, G. Erdélyi, G.A. Langer, D.L. Beke, A. Csik, G.L. Katona, L. Daróczi, M. Kis-Varga, A. Dudás, Vacuum 98, 70 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    D.L. Beke, G.A. Langer, G. Molnár, G. Erdélyi, G.L. Katona, A. Lakatos, K. Vad, Philos. Mag. 93, 16 (2013). 1960 CrossRefGoogle Scholar
  14. 14.
    S.N. Piramanayagam, T.C. Chong (eds.), Developments in Data Storage: Materials Perspective (John Wiley, New York, 2012) Google Scholar
  15. 15.
    J. Lyubina, B. Rellinghaus, O. Gutfleisch, M. Albrecht, Structure and magnetic properties of L10-ordered Fe–Pt alloys and nanoparticles, in Handbook of Magnetic Materials, vol. 19, ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2011), pp. 291–395 Google Scholar
  16. 16.
    A.T. McCallum, P. Krone, F. Springer, C. Brombacher, M. Albrecht, E. Dobisz, M. Grobis, D. Weller, O. Hellwig, Appl. Phys. Lett. 98, 242503 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    C. Brombacher, M. Grobis, J. Lee, J. Fidler, T. Eriksson, T. Werner, O. Hellwig, M. Albrecht, Nanotechnology 23, 025301 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    D. Makarov, J. Lee, C. Brombacher, C. Schubert, M. Fuger, D. Suess, J. Fidler, M. Albrecht, Appl. Phys. Lett. 96, 062501 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    T. Kai, T. Maeda, A. Kikitsu, J. Akiyama, T. Nagase, T. Kishi, J. Appl. Phys. 95, 609 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    C. Brombacher, H. Schletter, M. Daniel, P. Matthes, N. Jöhrmann, M. Maret, D. Makarov, M. Hietschold, M. Albrecht, J. Appl. Phys. 112, 073912 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    M. Maret, C. Brombacher, P. Matthes, D. Makarov, N. Boudet, M. Albrecht, Phys. Rev. B 86, 024204 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    Z.L. Zhao, J. Ding, K. Inaba, J.S. Chen, J.P. Wang, Appl. Phys. Lett. 83, 2196 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    S.S. Kang, D.E. Nikles, J.W. Harrel, J. Appl. Phys. 93, 7178 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    C.Y. You, Y.K. Takahashi, K. Hono, J. Appl. Phys. 100, 056105 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    Z.L. Zhao, J.S. Chen, J. Ding, B.H. Liu, J.B. Yi, J.P. Wang, Appl. Phys. Lett. 88, 052503 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    T.O. Seki, Y.K. Takahasi, K. Hono, J. Appl. Phys. 103, 023910 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    C. Chen, O. Kitakami, S. Okamoto, Y. Shimada, Appl. Phys. Lett. 76, 3218 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    O. Kitakami, Y. Shimada, Y. Oikawa, H. Daimon, K. Fukamichi, Appl. Phys. Lett. 78, 1104 (2001) ADSCrossRefGoogle Scholar
  29. 29.
    H. Oechsner, R. Getto, M. Kopnarski, J. Appl. Phys. 105, 063523 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    L. Péter, G.L. Katona, Z. Berényi, K. Vad, G.A. Langer, E. Tóth-Kádar, J. Pádár, L. Pogány, I. Bakonyi, Electrochim. Acta 53, 837 (2007) CrossRefGoogle Scholar
  31. 31.
    H. Mehrer (ed.), Diffusion in Solid Metals and Alloys, Landolt-Börnstein, New Ser., III/26 (Springer, Berlin, 1990) Google Scholar
  32. 32.
    A. Makovecz, G. Erdelyi, D.L. Beke, Thin Solid Films 520, 2362 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    A. Lakatos, G. Erdélyi, A. Makovec, G.A. Langer, A. Csik, K. Vad, D.L. Beke, Vacuum 86, 724 (2012) CrossRefGoogle Scholar
  34. 34.
    R.V. Chepulskii, S. Curtarolo, Appl. Phys. Lett. 97, 221908 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. L. Katona
    • 1
    Email author
  • I. A. Vladymyrskyi
    • 2
  • I. M. Makogon
    • 2
  • S. I. Sidorenko
    • 2
  • F. Kristály
    • 3
  • L. Daróczi
    • 1
  • A. Csik
    • 4
  • A. Liebig
    • 5
  • G. Beddies
    • 5
  • M. Albrecht
    • 5
  • D. L. Beke
    • 1
  1. 1.Department of Solid State PhysicsUniversity of DebrecenDebrecenHungary
  2. 2.National Technical University of Ukraine “Kiev Polytechnic Institute”KievUkraine
  3. 3.Department of Mineralogy and PetrologyUniversity of MiskolcMiskolc-EgyetemvárosHungary
  4. 4.Institute for Nuclear ResearchHungarian Academy of Sciences (ATOMKI)DebrecenHungary
  5. 5.Institute of PhysicsChemnitz University of TechnologyChemnitzGermany

Personalised recommendations