Applied Physics A

, Volume 114, Issue 4, pp 1303–1307 | Cite as

Melt pool dynamics during selective electron beam melting

  • T. Scharowsky
  • F. Osmanlic
  • R. F. Singer
  • C. Körner


Electron beam melting is a promising additive manufacturing technique for metal parts. Nevertheless, the process is still poorly understood making further investigations indispensable to allow a prediction of the part’s quality. To improve the understanding of the process especially the beam powder interaction, process observation at the relevant time scale is necessary.

Due to the difficult accessibility of the building area, the high temperatures, radiation and the very high scanning speeds during the melting process the observation requires an augmented effort in the observation equipment.

A high speed camera in combination with an illumination laser, band pass filter and mirror system is suitable for the observation of the electron beam melting process. The equipment allows to observe the melting process with a high spatial and temporal resolution.

In this paper the adjustment of the equipment and results of the lifetime and the oscillation frequencies of the melt pool for a simple geometry are presented.


Frame Rate Melting Process Additive Manufacturing Electron Beam Melting Shutter Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully thank the German Research Foundation (DFG) for funding our research in the Collaborative Research Centre 814, project B2. Further, we want to thank Ulric Ljungblad from ARCAM AB for the technical support during the equipment installation.


  1. 1.
    A. Mazzoli, M. Germani, R. Raffaeli, Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment. Mater. Des. (2009). doi: 10.1016/j.matdes.2008.11.013 Google Scholar
  2. 2.
    P. Heinl, L. Müller, C. Körner, R. Singer, F. Müller, Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. (2008). doi: 10.1016/j.actbio.2008.03.013 Google Scholar
  3. 3.
    G.V. Joshi, Y. Duan, J. Neidigh, M. Koike, G. Chahine, R. Kovacevic, T. Okabe, J.A. Griggs, Fatigue testing of electron beam-melted Ti-6Al-4V ELI alloy for dental implants. J. Biomed. Mater. Res., Part B, Appl. Biomater. (2013). doi: 10.1002/jbm.b.32825 Google Scholar
  4. 4.
    P. Heinl, A. Rottmair, C. Körner, R. Singer, Cellular titanium by selective electron beam melting. Adv. Eng. Mater. 9(5), 360–364 (2007) CrossRefGoogle Scholar
  5. 5.
    L. Rännar, A. Glad, C. Gustafson, Efficient cooling with tool inserts manufactured by electron beam melting. Rapid Prototyping J. (2007). doi: 10.1108/13552540710750870 Google Scholar
  6. 6.
    K. Karunakaran, A. Bernard, S. Suryakumar, L. Dembinski, G. Taillandier, Rapid manufacturing of metallic objects. Rapid Prototyping J. (2012). doi: 10.1108/13552541211231644 Google Scholar
  7. 7.
    H. Nyquist, Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. (1928). doi: 10.1109/T-AIEE.1928.5055024 Google Scholar
  8. 8.
    B. Steinhaus, A. Shen, R. Sureshkumar, Dynamics of viscoelastic fluid filaments in microfluidic devices. Phys. Fluids (2007). doi: 10.1063/1.2747660 Google Scholar
  9. 9.
    R. Rai, P. Burgardt, J. Milewski, T. Lienert, T. Debroy, Heat transfer and fluid flow during electron beam welding of 21Cr-6Ni-9Mn steel and Ti-6Al-4V alloy. J. Phys. D, Appl. Phys. (2009). doi: 10.1088/0022-3727/42/2/025503 Google Scholar
  10. 10.
    H. Lu, Q. Jiang, Surface tension and its temperature coefficient for liquid metals. J. Phys. Chem. B (2005). doi: 10.1021/jp0516341 Google Scholar
  11. 11.
    J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69(3), 865–929 (1997) ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    K. Mills, Recommended values of thermophysical properties for selected commercial alloys. ASM International, p. 212 (2002) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • T. Scharowsky
    • 1
  • F. Osmanlic
    • 1
  • R. F. Singer
    • 1
  • C. Körner
    • 1
  1. 1.Chair of Metals Science and TechnologyUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations